37 resultados para Bone Lead
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Due to technical restrictions of the database system the title of the thesis does not show corretly on this page. Numbers in the title are in superscript. Please see the PDF-file for correct title. ---- Osteomyelitis is a progressive inflammatory disease of bone and bone marrow that results in bone destruction due to an infective microorganism, most frequently Staphylococcus aureus. Orthopaedic concern relates to the need for reconstructive and trauma-related surgical procedures in the fast grow¬ing population of fragile, aged patients, who have an increased susceptibility to surgical site infections. Depending on the type of osteomyelitis, infection may be acute or a slowly progressing, low-grade infection. Peri-implant infections lead to implant loosening. The emerging antibiotic resistance of com¬mon pathogens further complicates the situation. With current imaging methods, significant limitations exist in the diagnosing of osteomyelitis and implant-related infections. Positron emission tomography (PET) with a glucose analogue, 18F-fluoro¬deoxyglucose (18F-FDG), seems to facilitate a more accurate diagnosis of chronic osteomyelitis. The method is based on the increased glucose consumption of activated inflammatory cells. Unfortunately, 18F-FDG accumulates also in sterile inflammation regions and causes false-positive findings, for exam¬ple, due to post-operative healing processes. Therefore, there is a clinical need for new, more infection-specific tracers. In addition, it is still unknown why 18F-FDG PET imaging is less accurate in the detec¬tion of periprosthetic joint infections, most frequently due to Staphylococcus epidermidis. This doctoral thesis focused on testing novel PET tracers (68Ga-chloride and 68Ga-DOTAVAP-P1) for early detections of bone infections and evaluated the role of pathogen-related factors in the appli¬cations of 18F-FDG PET in the diagnostics of bone infections. For preclinical models of S. epidermidis and S. aureus bone/implant infections, the significance of the causative pathogen was studied with respect to 18F-FDG uptake. In a retrospective analysis of patients with confirmed bone infections, the significance of the presence or absence of positive bacterial cultures on 18F-FDG uptake was evalu¬ated. 18F-FDG and 68Ga-chloride resulted in a similar uptake in S. aureus osteomyelitic bones. However, 68Ga-chloride did not show uptake in healing bones, and therefore it may be a more-specific tracer in the early post-operative or post-traumatic phase. 68Ga-DOTAVAP-P1, a novel synthetic peptide bind¬ing to vascular adhesion protein 1 (VAP-1), was able to detect the phase of inflammation in healing bones, but the uptake of the tracer was elevated also in osteomyelitis. Low-grade peri-implant infec¬tions due to S. epidermidis were characterized by a low uptake of 18F-FDG, which reflects the virulence of the causative pathogen and the degree of leukocyte infiltration. In the clinical study, no relationship was found between the level of 18F-FDG uptake and the presence of positive or negative bacterial cul¬tures. Thus 18F-FDG PET may help to confirm metabolically active infection process in patients with culture-negative, histologically confirmed, low-grade osteomyelitis.
Resumo:
Skeletal tissue is constantly remodeled in a process where osteoclasts resorb old bone and osteoblasts form new bone. Balance in bone remodeling is related to age, gender and genetic factors, but also many skeletal diseases, such as osteoporosis and cancer-induced bone metastasis, cause imbalance in bone turnover and lead to decreased bone mass and increased fracture risk. Biochemical markers of bone turnover are surrogates for bone metabolism and may be used as indicators of the balance between bone resorption and formation. They are released during the remodeling process and can be conveniently and reliably measured from blood or urine by immunoassays. Most commonly used bone formation markers include N-terminal propeptides of type I collagen (PINP) and osteocalcin, whereas tartrate-resistant acid phosphatase isoform 5b (TRACP 5b) and C-terminal cross-linked telopeptide of type I collagen (CTX) are common resorption markers. Of these, PINP has been, until recently, the only marker not commercially available for preclinical use. To date, widespread use of bone markers is still limited due to their unclear biological significance, variability, and insufficient evidence of their prognostic value to reflect long term changes. In this study, the feasibility of bone markers as predictors of drug efficacy in preclinical osteoporosis models was elucidated. A non-radioactive PINP immunoassay for preclinical use was characterized and validated. The levels of PINP, N-terminal mid-fragment of osteocalcin, TRACP 5b and CTX were studied in preclinical osteoporosis models and the results were compared with the results obtained by traditional analysis methods such as histology, densitometry and microscopy. Changes in all bone markers at early timepoints correlated strongly with the changes observed in bone mass and bone quality parameters at the end of the study. TRACP 5b correlated strongly with the osteoclast number and CTX correlated with the osteoclast activity in both in vitro and in vivo studies. The concept “resorption index” was applied to the relation of CTX/TRACP 5b to describe the mean osteoclast activity. The index showed more substantial changes than either of the markers alone in the preclinical osteoporosis models used in this study. PINP was strongly associated with bone formation whereas osteocalcin was associated with both bone formation and resorption. These results provide novel insight into the feasibility of PINP, osteocalcin, TRACP 5b and CTX as predictors of drug efficacy in preclinical osteoporosis models. The results support clinical findings which indicate that short-term changes of these markers reflect long-term responses in bone mass and quality. Furthermore, this information may be useful when considering cost-efficient and clinically predictive drug screening and development assays for mining new drug candidates for skeletal diseases.
Resumo:
Bone is a physiologically dynamic tissue being constantly regenerated throughout life as a consequence of bone turnover by bone-resorbing osteoclasts and bone-forming osteoblasts. In certain bone diseases, such as osteoporosis, the imbalance in bone turnover leads to bone loss and increased fracture risk. Measurement of bone mineral density (BMD) predicts the risk of fracture, but also biochemical markers of bone metabolism have been suggested to be suitable for prediction of fractures and monitoring the efficacy of antiresorptive treatment. Tartrate-resistant acid phosphatase 5b (TRACP 5b) is an enzyme released from osteoclasts into the circulation, from where it can be detected kinetically or immunologically. Conventional assays for serum total TRACP were spectrophotometric and suffered from interference by other acid phosphatases and non-osteoclastic TRACP 5a isoform. Our aim was to develop novel immunoassays for osteoclastic TRACP 5b. Serum TRACP 5b levels were elevated in individuals with high bone turnover, such as children, postmenopausal women, patients with osteoporosis, Paget’s disease and breast cancer patients with bone metastases. As expected, hormone replacement therapy (HRT) in postmenopausal women decreased the levels of serum TRACP 5b. Surprisingly, the highest TRACP 5b levels were observed in individuals with rare autosomal dominant osteopetrosis type II (ADO2), which is characterized by high BMD and fracture risk with simultaneously elevated levels of deficient osteoclasts. In ADO2 patients, elevated levels of serum TRACP 5b were associated with high fracture frequency. It is likely that serum TRACP 5b reflects the number of inactive osteoclasts in ADO2. Similar results supporting the hypothesis that TRACP 5b would reflect the number of osteoclasts instead of their activity were observed with cultured osteoclasts and in animal models. Novel TRACP 5b immunoassays may prove to be of value either as independent or combinatory tools with other bone metabolic markers and BMD measurements in clinical practice and bone research.
Resumo:
Selostus: Tuhkapitoisuuden vaikutus lihaluujauhon reaktiivisen lysiinin hyväksikäyttöön lihasioilla
Resumo:
Reconstruction of defects in the craniomaxillofacial (CMF) area has mainly been based on bone grafts or metallic fixing plates and screws. Particularly in the case of large calvarial and/or craniofacial defects caused by trauma, tumours or congenital malformations, there is a need for reliable reconstruction biomaterials, because bone grafts or metallic fixing systems do not completely fulfill the criteria for the best possible reconstruction methods in these complicated cases. In this series of studies, the usability of fibre-reinforced composite (FRC) was studied as a biostable, nonmetallic alternative material for reconstructing artificially created bone defects in frontal and calvarial areas of rabbits. The experimental part of this work describes the different stages of the product development process from the first in vitro tests with resin-impregnated fibrereinforced composites to the in vivo animal studies, in which this FRC was tested as an implant material for reconstructing different size bone defects in rabbit frontal and calvarial areas. In the first in vitro study, the FRC was polymerised in contact with bone or blood in the laboratory. The polymerised FRC samples were then incubated in water, which was analysed for residual monomer content by using high performance liquid chromatography (HPLC). It was found that this in vitro polymerisation in contact with bone and blood did not markedly increase the residual monomer leaching from the FRC. In the second in vitro study, different adhesive systems were tested in fixing the implant to bone surface. This was done to find an alternative implant fixing system to screws and pins. On the basis of this study, it was found that the surface of the calvarial bone needed both mechanical and chemical treatments before the resinimpregnated FRC could be properly fixed onto it. In three animal studies performed with rabbit frontal bone defects and critical size calvarial bone defect models, biological responses to the FRC implants were evaluated. On the basis of theseevaluations, it can be concluded that the FRC, based on E-glass (electrical glass) fibres forming a porous fibre veil enables the ingrowth of connective tissues to the inner structures of the material, as well as the bone formation and mineralization inside the fibre veil. Bone formation could be enhanced by using bioactive glass granules fixed to the FRC implants. FRC-implanted bone defects healed partly; no total healing of defects was achieved. Biological responses during the follow-up time, at a maximum of 12 weeks, to resin-impregnated composite implant seemed to depend on the polymerization time of the resin matrix of the FRC. Both of the studied resin systems used in the FRC were photopolymerised and the heat-induced postpolymerisation was used additionally.
Resumo:
A number of contaminants such as arsenic, cadmium and lead are released into the environment from natural and anthropogenic sources contaminating food and water. Chronic oral ingestion of arsenic, cadmium and lead is associated with adverse effects in the skin, internal organs and nervous system. In addition to conventional methods, biosorption using inactivated biomasses of algae, fungi and bacteria has been introduced as a novel method for decontamination of toxic metals from water. The aim of this work was to evaluate the applicability of lactic acid bacteria as tools for heavy metal removal from water and characterize their properties for further development of a biofilter. The results established that in addition to removal of mycotoxins, cyanotoxins and heterocyclic amines, lactic acid bacteria have a capacity to bind cationic heavy metals, cadmium and lead. The binding was found to be dependent on the bacterial strain and pH, and occurred rapidly on the bacterial surface, but was reduced in the presence of other cationic metals. The data demonstrates that the metals were bound by electrostatic interactions to cell wall components. Transmission electron micrographs showed the presence of lead deposits on the surface of biomass used in the lead binding studies, indicating involvement of another uptake/binding mechanism. The most efficient strains bound up to 55 mg Cd and 176 mg Pb / g dry biomass. A low removal of anionic As(V) was also observed after chemical modification of the cell wall. Full desorption of bound cadmium and lead using either dilute HNO3 or EDTA established the reversibility of binding. Removal of both metals was significantly reduced when biomass regenerated with EDTA was used. Biomass regenerated with dilute HNO3 retained its cadmium binding capacity well, but lead binding was reduced. The results established that the cadmium and lead binding capacity of lactic acid bacteria, and factors affecting it, are similar to what has been previously observed for other biomasses used for the same purpose. However, lactic acid bacteria have a capacity to remove other aqueous contaminants such as cyanotoxins, which may give them an additional advantage over the other alternatives. Further studies focusing on immobilization of biomass and the removal of several contaminants simultaneously using immobilized bacteria are required.
Resumo:
Teollisuuden palveluiden on huomattu olevan potentiaalinen lisätulojen lähde. Teollisuuden palveluiden dynaamisessa maailmassa räätälöinti ja kyky toimia nopeasti ovat kriittisiä asiakastyytyväisyyden ja kilpailuedun luomisprosessin osia. Toimitusketjussa käytetyn ajan lyhentämisellä voidaan saavuttaa sekä paremmat vasteajat, että alhaisemmat kokonaiskustannukset. Tutkielman tavoitteena on kuvata teollisuuden palveluiden dynaamista ympäristöä: asiakastarvetta, sekä mahdollisuuksia kaventaa pyydetyn ja saavutetun toimitusajan välistä eroa. Tämä toteutetaan pääosin strategisen toimitusajan hallinnan keinoin. Langattomien tietoliikenneverkkojen operaattorit haluavat vähentää ydinosaamiseensa kuulumatomiin toimintoihin, kuten ylläpitoon sitoutuneita pääomia. Tutkielman case osiossa varaosapalvelujen toimitusketjun kysyntä-, materiaali- ja informaatiovirtoja analysoidaan niin kvalitatiivisten haastatteluiden, sisäisten dokumenttien, kuin kvantitatiivisten tilastollisten menetelmienkin avulla. Löydöksiä peilataan vallitsevaa toimitusketjun ja ajanhallinnan paradigmaa vasten. Tulokset osoittavat, että vahvan palvelukulttuurin omaksuminen ja kokonaisvaltainen toimitusketjun tehokkuuden mittaaminen ovat ajanhallinnan lähtökohtia teollisuuden palveluissa.
Resumo:
Bone engineering is a rapidly developing area of reconstructive medicine where bone inducing factors and/or cells are combined with a scaffold material to regenerate the structure and function of the original tissue. The aim of this study was to compare the suitability of different macroporous scaffold types for bone engineering applications. The two scaffold categories studied were a) the mechanically strong and stable titanium fiber meshes and b) the elastic and biodegradable porous polymers. Furthermore, bioactive modifications were applied to these basic scaffold types, and their effect on the osteogenic responses was evaluated in cell culture and ectopic bone formation studies. The osteogenic phenotype of cultured cell-scaffold constructs was heightened with a sol-gel derived titania coating, but not with a mixed titania-silica coating. The latter coating also resulted in delayed ectopic bone formation in bone marrow stromal cell seeded scaffolds. However, the better bone contact in early implantation times and more even bone tissue distribution at later times indicated enhanced osteoconductivity of both the coated scaffold types. Overall, the most promising bone engineering results were obtained with titania coated fiber meshes. Elastic and biodegradable poly(ε-caprolactone/D,L-lactide) based scaffolds were also developed in this study. The degradation rates of the scaffolds in vitro were governed by the hydrophilicity of the polymer matrix, and the porous architecture was controlled by the amount and type of porogen used. A continuous phase macroporosity was obtained using a novel CaCl2 • 6H2O porogen. Dynamic culture conditions increased cell invasion, but decreased cell numbers and osteogenicity, within the scaffolds. Osteogenic differentiation in static cultures and ectopic bone formation in cell seeded scaffolds were enhanced in composites, with 30 wt-% of bioactive glass filler.
Resumo:
Many companies today struggle with problems they face around sales lead management. They are suffering from inconsistent quality of leads, they miss clear sales opportunities and even cannot handle well their internal marketing lists. Meanwhile customers are better and better equipped with means to easily initiate contact via internet, via call centers etc. Investing in lead generation activities that are built on a bad process is not a good idea. Better than asking how to get more leads, companies should ask how to get better quality leads and invest in improving lead management. This study looks sales lead management as a multi step process where a company generates leads in controlled environment, qualifies them and hands over to the sales cycle. As a final step, organization needs to analyze the incomes and successes of different lead sources. Most often in sales lead management a process improvement requires setting up additional controls to enable proper tracking of all leads. A sales lead management process model for the case company is built based on the findings. Implementing the new model involves changes and improvements in some key areas of current process. Starting from the very beginning, these include redefining a bit the lead definition and revising the criteria set for qualified lead. There are some improvements to be done in the system side to enable the proposed model. Lastly a setting for responsible roles is presented.
Resumo:
Adolescence is an important time for acquiring high peak bone mass. Physical activity is known to be beneficial to bone development. The effect of estrogen-progestin contraceptives (EPC) is still controversial. Altogether 142 (52 gymnasts, 46 runners, and 42 controls) adolescent women participated in this study, which is based on two 7-year (n =142), one 6-year (n =140) and one 4-year (n =122) follow-ups. Information on physical activity, menstrual history, sexual maturation, nutrition, living habits and health status was obtained through questionnaires and interviews. The bone mineral density (BMD) and content (BMC) of lumbar spine (LS) and femoral neck (FN) were measured by dual- energy X-ray absoptiometry. Calcaneal sonographic measurements were also made. The physical activity of the athletes participating in this study decreased after 3-year follow-up. High-impact exercise was beneficial to bones. LS and FN BMC was higher in gymnasts than in controls during the follow-up. Reduction in physical activity had negative effects on bone mass. LS and FN BMC increased less in the group having reduced their physical activity more than 50%, compared with those continuing at the previous level (1.69 g, p=0.021; 0.14 g, p=0.015, respectively). The amount of physical activity was the only significant parameter accounting for the calcaneal sonography measurements at 6-year follow-up (11.3%) and reduced activity level was associated with lower sonographic values. Long-term low-dose EPC use seemed to prevent normal bone mass acquisition. There was a significant trend towards a smaller increase in LS and FN BMC among long-term EPC users. In conclusion, this study confirms that high-impact exercise is beneficial to bones and that the benefits are partly maintained even after a clear reduction in training level at least for 4 years. Continued exercise is needed to retain all acquired benefits. The bone mass gained and maintained can possibly be maximized in adolescence by implementing high-impact exercise for youngsters. The peak bone mass of the young women participating in the study may be reached before the age of 20. Use of low-dose EPCs seems to suppress normal bone mass acquisition.
Resumo:
The objective of this study is to show that bone strains due to dynamic mechanical loading during physical activity can be analysed using the flexible multibody simulation approach. Strains within the bone tissue play a major role in bone (re)modeling. Based on previous studies, it has been shown that dynamic loading seems to be more important for bone (re)modeling than static loading. The finite element method has been used previously to assess bone strains. However, the finite element method may be limited to static analysis of bone strains due to the expensive computation required for dynamic analysis, especially for a biomechanical system consisting of several bodies. Further, in vivo implementation of strain gauges on the surfaces of bone has been used previously in order to quantify the mechanical loading environment of the skeleton. However, in vivo strain measurement requires invasive methodology, which is challenging and limited to certain regions of superficial bones only, such as the anterior surface of the tibia. In this study, an alternative numerical approach to analyzing in vivo strains, based on the flexible multibody simulation approach, is proposed. In order to investigate the reliability of the proposed approach, three 3-dimensional musculoskeletal models where the right tibia is assumed to be flexible, are used as demonstration examples. The models are employed in a forward dynamics simulation in order to predict the tibial strains during walking on a level exercise. The flexible tibial model is developed using the actual geometry of the subject’s tibia, which is obtained from 3 dimensional reconstruction of Magnetic Resonance Images. Inverse dynamics simulation based on motion capture data obtained from walking at a constant velocity is used to calculate the desired contraction trajectory for each muscle. In the forward dynamics simulation, a proportional derivative servo controller is used to calculate each muscle force required to reproduce the motion, based on the desired muscle contraction trajectory obtained from the inverse dynamics simulation. Experimental measurements are used to verify the models and check the accuracy of the models in replicating the realistic mechanical loading environment measured from the walking test. The predicted strain results by the models show consistency with literature-based in vivo strain measurements. In conclusion, the non-invasive flexible multibody simulation approach may be used as a surrogate for experimental bone strain measurement, and thus be of use in detailed strain estimation of bones in different applications. Consequently, the information obtained from the present approach might be useful in clinical applications, including optimizing implant design and devising exercises to prevent bone fragility, accelerate fracture healing and reduce osteoporotic bone loss.
Resumo:
Soitinnus: Sekakuoro.
Resumo:
The skeleton undergoes continuous turnover throughout life. In women, an increase in bone turnover is pronounced during childhood and puberty and after menopause. Bone turnover can be monitored by measuring biochemical markers of bone resorption and bone formation. Tartrate-resistant acid phosphatase (TRACP) is an enzyme secreted by osteoclasts, macrophages and dendritic cells. The secreted enzyme can be detected from the blood circulation by recently developed immunoassays. In blood circulation, the enzyme exists as two isoforms, TRACP 5a with an intact polypeptide chain and TRACP 5b in which the polypeptide chain consists of two subunits. The 5b form is predominantly secreted by osteoclasts and is thus associated with bone turnover. The secretion of TRACP 5b is not directly related to bone resorption; instead, the levels are shown to be proportional to the number of osteoclasts. Therefore, the combination of TRACP 5b and a marker reflecting bone degradation, such as C-terminal cross-linked telopeptides of type I collagen (CTX), enables a more profound analysis of the changes in bone turnover. In this study, recombinant TRACP 5a-like protein was proteolytically processed into TRACP 5b-like two subunit form. The 5b-like form was more active both as an acid phosphatase and in producing reactive oxygen species, suggesting a possible function for TRACP 5b in osteoclastic bone resorption. Even though both TRACP 5a and 5b were detected in osteoclasts, serum TRACP 5a levels demonstrated no change in response to alendronate treatment of postmenopausal women. However, TRACP 5b levels decreased substantially, demonstrating that alendronate decreases the number of osteoclasts. This was confirmed in human osteoclast cultures, showing that alendronate decreased the number of osteoclats by inducing osteoclast apoptosis, and TRACP 5b was not secreted as an active enzyme from the apoptotic osteoclasts. In peripubertal girls, the highest levels of TRACP 5b and other bone turnover markers were observed at the time of menarche, whereas at the same time the ratio of CTX to TRACP 5b was lowest, indicating the presence of a high number of osteoclasts with decreased resorptive activity. These results support the earlier findings that TRACP 5b is the predominant form of TRACP secreted by osteoclasts. The major source of circulating TRACP 5a remains to be established, but is most likely other cells of the macrophage-monocyte system. The results also suggest that bone turnover can be differentially affected by both osteoclast number and their resorptive activity, and provide further support for the possible clinical use of TRACP 5b as a marker of osteoclast number.