12 resultados para Bochner tensor

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diffusion tensor imaging (DTI) is an advanced magnetic resonance imaging (MRI) technique. DTI is based on free thermal motion (diffusion) of water molecules. The properties of diffusion can be represented using parameters such as fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity, which are calculated from DTI data. These parameters can be used to study the microstructure in fibrous structure such as brain white matter. The aim of this study was to investigate the reproducibility of region-of-interest (ROI) analysis and determine associations between white matter integrity and antenatal and early postnatal growth at term age using DTI. Antenatal growth was studied using both the ROI and tract-based spatial statistics (TBSS) method and postnatal growth using only the TBSS method. The infants included to this study were born below 32 gestational weeks or birth weight less than 1,501 g and imaged with a 1.5 T MRI system at term age. Total number of 132 infants met the inclusion criteria between June 2004 and December 2006. Due to exclusion criteria, a total of 76 preterm infants (ROI) and 36 preterm infants (TBSS) were accepted to this study. The ROI analysis was quite reproducible at term age. Reproducibility varied between white matter structures and diffusion parameters. Normal antenatal growth was positively associated with white matter maturation at term age. The ROI analysis showed associations only in the corpus callosum. Whereas, TBSS revealed associations in several brain white matter areas. Infants with normal antenatal growth showed more mature white matter compared to small for gestational age infants. The gestational age at birth had no significant association with white matter maturation at term age. It was observed that good early postnatal growth associated negatively with white matter maturation at term age. Growth-restricted infants seemed to have delayed brain maturation that was not fully compensated at term, despite catchup growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work is dedicated to investigation of the energy spectrum of one of the most anisotropic narrow-gap semiconductors, CdSb. At the beginning of the present studies even the model of its energy band structure was not clear. Measurements of galvanomagnetic effects in wide temperature range (1.6 - 300 K) and in magnetic fields up to 30 T were chosen for clarifying of the energy spectrum in the intentionally undoped CdSb single crystals and doped with shallow impurities (In, Ag). Detection of the Shubnikov - de Haas oscillations allowed estimating the fundamental energy spectrum parameters. The shapes of the Fermi surfaces of electrons (sphere) and holes (ellipsoid), the number of the equivalent extremums for valence band (2) and their positions in the Brillouin zone were determined for the first time in this work. Also anisotropy coefficients, components of the tensor of effective masses of carriers, effective masses of density of states, nonparabolicity of the conduction and valence bands, g-factor and its anisotropy for n- and p-CdSb were estimated for the first time during these studies. All the results obtained are compared with the cyclotron resonance data and the corresponding theoretical calculations for p-CdSb. This is basic information for the analyses of the complex transport properties of CdSb and for working out the energy spectrum model of the shallow energy levels of defects and impurities in this semiconductor. It was found out existence of different mechanisms of hopping conductivity in the presence of metal - insulator transition induced by magnetic field in n- and p-CdSb. Quite unusual feature opened in CdSb is that different types of hopping conductivity may take place in the same crystal depending on temperature, magnetic field or even orientation of crystal in magnetic field. Transport properties of undoped p-CdSb samples show that the anisotropy of the resistivity in weak and strong magnetic fields is determined completely by the anisotropy of the effective mass of the holes. Temperature and magnetic field dependence of the Hall coefficient and magnetoresistance is attributed to presence of two groups of holes with different concentrations and mobilities. The analysis demonstrates that below Tcr ~ 20 K and down to ~ 6 - 7 K the low-mobile carriers are itinerant holes with energy E2 ≈ 6 meV. The high-mobile carriers, at all temperatures T < Tcr, are holes activated thermally from a deeper acceptor band to itinerant states of a shallower acceptor band with energy E1 ≈ 3 meV. Analysis of temperature dependences of mobilities confirms the existence of the heavy-hole band or a non-equivalent maximum and two equivalent maxima of the light-hole valence band. Galvanomagnetic effects in n-CdSb reveal the existence of two groups of carriers. These are the electrons of a single minimum in isotropic conduction band and the itinerant electrons of the narrow impurity band, having at low temperatures the energies above the bottom of the conduction band. It is found that above this impurity band exists second impurity band of only localized states and the energy of both impurity bands depend on temperature so that they sink into the band gap when temperature is increased. The bands are splitted by the spin, and in strong magnetic fields the energy difference between them decreases and redistribution of the electrons between the two impurity bands takes place. Mobility of the conduction band carriers demonstrates that scattering in n-CdSb at low temperatures is strongly anisotropic. This is because of domination from scattering on the neutral impurity centers and increasing of the contribution to mobility from scattering by acoustic phonons when temperature increases. Metallic conductivity in zero or weak magnetic field is changed to activated conductivity with increasing of magnetic field. This exhibits a metal-insulator transition (MIT) induced by the magnetic field due to shift of the Fermi level from the interval of extended states to that of the localized states of the electron spectrum near the edge of the conduction band. The Mott variablerange hopping conductivity is observed in the low- and high-field intervals on the insulating side of the MIT. The results yield information about the density of states, the localization radius of the resonant impurity band with completely localized states and about the donor band. In high magnetic fields this band is separated from the conduction band and lies below the resonant impurity bands.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dynamical properties ofshaken granular materials are important in many industrial applications where the shaking is used to mix, segregate and transport them. In this work asystematic, large scale simulation study has been performed to investigate the rheology of dense granular media, in the presence of gas, in a three dimensional vertical cylinder filled with glass balls. The base wall of the cylinder is subjected to sinusoidal oscillation in the vertical direction. The viscoelastic behavior of glass balls during a collision, have been studied experimentally using a modified Newton's Cradle device. By analyzing the results of the measurements, using numerical model based on finite element method, the viscous damping coefficient was determinedfor the glass balls. To obtain detailed information about the interparticle interactions in a shaker, a simplified model for collision between particles of a granular material was proposed. In order to simulate the flow of surrounding gas, a formulation of the equations for fluid flow in a porous medium including particle forces was proposed. These equations are solved with Large Eddy Simulation (LES) technique using a subgrid-model originally proposed for compressible turbulent flows. For a pentagonal prism-shaped container under vertical vibrations, the results show that oscillon type structures were formed. Oscillons are highly localized particle-like excitations of the granular layer. This self-sustaining state was named by analogy with its closest large-scale analogy, the soliton, which was first documented by J.S. Russell in 1834. The results which has been reportedbyBordbar and Zamankhan(2005b)also show that slightly revised fluctuation-dissipation theorem might apply to shaken sand, which appears to be asystem far from equilibrium and could exhibit strong spatial and temporal variations in quantities such as density and local particle velocity. In this light, hydrodynamic type continuum equations were presented for describing the deformation and flow of dense gas-particle mixtures. The constitutive equation used for the stress tensor provides an effective viscosity with a liquid-like character at low shear rates and a gaseous-like behavior at high shear rates. The numerical solutions were obtained for the aforementioned hydrodynamic equations for predicting the flow dynamics ofdense mixture of gas and particles in vertical cylindrical containers. For a heptagonal prism shaped container under vertical vibrations, the model results were found to predict bubbling behavior analogous to those observed experimentally. This bubbling behavior may be explained by the unusual gas pressure distribution found in the bed. In addition, oscillon type structures were found to be formed using a vertically vibrated, pentagonal prism shaped container in agreement with computer simulation results. These observations suggest that the pressure distribution plays a key rolein deformation and flow of dense mixtures of gas and particles under vertical vibrations. The present models provide greater insight toward the explanation of poorly understood hydrodynamic phenomena in the field of granular flows and dense gas-particle mixtures. The models can be generalized to investigate the granular material-container wall interactions which would be an issue of high interests in the industrial applications. By following this approach ideal processing conditions and powder transport can be created in industrial systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chorioamnionitis is known to be an important risk factor underlying preterm delivery, and it has also been suggested to associate with brain lesions and deviant neurological development in both preterm and term infants. Cytokines are believed to be the link causing the deleterious effects of inflammation to the nervous system. Their genetic regulation has also been suggested to play a role, as interleukin (IL)-6 -174 and -572 genotypes, which partly regulate IL-6 synthesis responses, have been connected with deviant neurological development in preterm infants. We evaluated the association of histological chorioamnionitis with brain lesions, regional brain volumes, and the functioning of the auditory pathway in very low birth weight/very low gestational age (VLBW/VLGA) infants. In addition, we investigated the association between IL-6 -174 and -572 genotypes and histological chorioamnionitis, neonatal infections, and brain lesions and regional brain volumes in VLBW/VLGA infants. This study is a part of a larger multidisciplinary project PIPARI (Development and Functioning of Very Low Birth Weight Infants from Infancy to School Age), in which the survivors of a 6-year cohort of VLBW/VLGA infants (n=274) are being followed until school age in Turku University Central Hospital, Finland. Placental samples were collected in the delivery room, and were analyzed for histological inflammatory findings. Blood samples from the infants were collected and DNA was genotyped for IL-6-174 and -572 polymorphisms (GG/GC/CC). Brain ultrasound examinations were performed repeatedly in the neonatal intensive care unit and at term age, and were analysed for structural brain lesions. Brain magnetic resonance imaging was performed at term age, and was analysed for regional brain volumes. In addition, diffusion tensor imaging was performed at term, and was used to analyse fractional anisotrophy and the apparent diffusion coefficient of inferior colliculus. The brainstem auditory evoked potential recordings were carried out according to the routine clinical procedure at median age of 30 days after term age. In our study, we found that histological chorioamnionitis was not an independent risk factor for brain lesions, reduced regional brain volumes or abnormal functioning of the auditory pathway in VLBW/VLGA infants. In addition, we found that IL-6 -174 GG and -572 GC genotypes were associated with a higher incidence of histological chorioamnionitis, and that -174 CC genotype associated with higher incidence of septicaemia. The analysed IL-6 genotypes were not associated with other brain lesions, but a reduced volume of basal ganglia and thalami was associated with IL-6 -174 CC and -572 GG genotypes. In conclusion, our findings suggest that histological chorioamnionitis is not an independent risk factor for the brain development of VLBW/VLGA infants, or that the risk caused by inflammation does not exceed the risks attributed to other underlying pathologies behind preterm deliveries. In addition, our findings give reason to propose that IL-6 promoter genotypes have a role in the defence against serious infections and in the brain development of VLBW/VLGA infants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pathological gambling, a form of behavioral addiction, refers to maladaptive, compulsive gambling behavior severely interfering with an individual’s normal life. The prevalence of pathological gambling has been estimated to be 1–2% in western societies. The reward deficiency hypothesis of addiction assumes that individuals that have, or are prone, to addictions have blunted mesolimbic dopamine reward signaling, which leads to compulsive reward seeking in an attempt to compensate for the malfunctioning brain reward network. In this research project, the effects of gambling were measured using brain [11C] raclopride PET during slot machine gambling and possible brain structural changes associated with pathological gambling using MRI. The subjects included pathological gamblers and healthy volunteers. In addition, impulse control disorders associated with Parkinson’s disease were investigated by using brain [18F]fluorodopa PET and conducting an epidemiological survey. The results demonstrate mesolimbic dopamine release during gambling in both pathological gamblers and healthy volunteers. Striatal dopamine was released irrespective of the gambling outcome, whether the subjects won or not. There was no difference in gambling induced dopamine release between pathological gamblers and control subjects, although the magnitude of the dopamine release correlated with gambling related symptom severity in pathological gamblers. The results also show that pathological gambling is associated with extensive abnormality of brain white matter integrity, as measured with diffusion tensor imaging, similar to substance-addictions. In Parkinson’s disease patients with impulse control disorders, enhanced brain [18F] fluorodopa uptake in the medial orbitofrontal cortex was observed, indicating increased presynaptic monoamine function in this region, which is known to influence signaling in the mesolimbic system and reward processing. Finally, a large epidemiological survey in Finnish Parkinson’s disease patients showed that compulsive behaviors are very common in Parkinson disease and they are strongly associated with depression. These findings demonstrate the role of dopamine in pathological gambling, without support for the concept of reward deficiency syndrome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thesis is related to the topic of image-based characterization of fibers in pulp suspension during the papermaking process. Papermaking industry is focusing on process control optimization and automatization, which makes it possible to manufacture highquality products in a resource-efficient way. Being a part of the process control, pulp suspension analysis allows to predict and modify properties of the end product. This work is a part of the tree species identification task and focuses on analysis of fiber parameters in the pulp suspension at the wet stage of paper production. The existing machine vision methods for pulp characterization were investigated, and a method exploiting direction sensitive filtering, non-maximum suppression, hysteresis thresholding, tensor voting, and curve extraction from tensor maps was developed. Application of the method to the microscopic grayscale pulp images made it possible to detect curves corresponding to fibers in the pulp image and to compute their morphological characteristics. Performance of the method was evaluated based on the manually produced ground truth data. An accuracy of fiber characteristics estimation, including length, width, and curvature, for the acacia pulp images was found to be 84, 85, and 60% correspondingly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Approximately two percent of Finns have sequels after traumatic brain injury (TBI), and many TBI patients are young or middle-aged. The high rate of unemployment after TBI has major economic consequences for society, and traumatic brain injury often has remarkable personal consequences, as well. Structural imaging is often needed to support the clinical TBI diagnosis. Accurate early diagnosis is essential for successful rehabilition and, thus, may also influence the patient’s outcome. Traumatic axonal injury and cortical contusions constitute the majority of traumatic brain lesions. Several studies have shown magnetic resonance imaging (MRI) to be superior to computed tomography (CT) in the detection of these lesions. However, traumatic brain injury often leads to persistent symptoms even in cases with few or no findings in conventional MRI. Aims and methods: The aim of this prospective study was to clarify the role of conventional MRI in the imaging of traumatic brain injury, and to investigate how to improve the radiologic diagnostics of TBI by using more modern diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) techniques. We estimated, in a longitudinal study, the visibility of the contusions and other intraparenchymal lesions in conventional MRI at one week and one year after TBI. We used DWI-based measurements to look for changes in the diffusivity of the normal-appearing brain in a case-control study. DTI-based tractography was used in a case-control study to evaluate changes in the volume, diffusivity, and anisotropy of the long association tracts in symptomatic TBI patients with no visible signs of intracranial or intraparenchymal abnormalities on routine MRI. We further studied the reproducibility of different tools to identify and measure white-matter tracts by using a DTI sequence suitable for clinical protocols. Results: Both the number and extent of visible traumatic lesions on conventional MRI diminished significantly with time. Slightly increased diffusion in the normal-appearing brain was a common finding at one week after TBI, but it was not significantly associated with the injury severity. Fractional anisotropy values, that represent the integrity of the white-matter tracts, were significantly diminished in several tracts in TBI patients compared to the control subjects. Compared to the cross-sectional ROI method, the tract-based analyses had better reproducibility to identify and measure white-matter tracts of interest by means of DTI tractography. Conclusions: As conventional MRI is still applied in clinical practice, it should be carried out soon after the injury, at least in symptomatic patients with negative CT scan. DWI-related brain diffusivity measurements may be used to improve the documenting of TBI. DTI tractography can be used to improve radiologic diagnostics in a symptomatic TBI sub-population with no findings on conventional MRI. Reproducibility of different tools to quantify fibre tracts vary considerably, which should be taken into consideration in the clinical DTI applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is a chronic immune-mediated inflammatory disorder of the central nervous system. MS is the most common disabling central nervous system (CNS) disease of young adults in the Western world. In Finland, the prevalence of MS ranges between 1/1000 and 2/1000 in different areas. Fabry disease (FD) is a rare hereditary metabolic disease due to mutation in a single gene coding α-galactosidase A (alpha-gal A) enzyme. It leads to multi-organ pathology, including cerebrovascular disease. Currently there are 44 patients with diagnosed FD in Finland. Magnetic resonance imaging (MRI) is commonly used in the diagnostics and follow-up of these diseases. The disease activity can be demonstrated by occurrence of new or Gadolinium (Gd)-enhancing lesions in routine studies. Diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) are advanced MR sequences which can reveal pathologies in brain regions which appear normal on conventional MR images in several CNS diseases. The main focus in this study was to reveal whether whole brain apparent diffusion coefficient (ADC) analysis can be used to demonstrate MS disease activity. MS patients were investigated before and after delivery and before and after initiation of diseasemodifying treatment (DMT). In FD, DTI was used to reveal possible microstructural alterations at early timepoints when excessive signs of cerebrovascular disease are not yet visible in conventional MR sequences. Our clinical and MRI findings at 1.5T indicated that post-partum activation of the disease is an early and common phenomenon amongst mothers with MS. MRI seems to be a more sensitive method for assessing MS disease activity than the recording of relapses. However, whole brain ADC histogram analysis is of limited value in the follow-up of inflammatory conditions in a pregnancy-related setting because the pregnancy-related physiological effects on ADC overwhelm the alterations in ADC associated with MS pathology in brain tissue areas which appear normal on conventional MRI sequences. DTI reveals signs of microstructural damage in brain white matter of FD patients before excessive white matter lesion load can be observed on conventional MR scans. DTI could offer a valuable tool for monitoring the possible effects of enzyme replacement therapy in FD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system CNS), where inflammation and neurodegeneration lead to irreversible neuronal damage. In MS, a dysfunctional immune system causes auto‐reactive lymphocytes to migrate into CNS where they initiate an inflammatory cascade leading to focal demyelination, axonal degeneration and neuronal loss. One of the hallmarks of neuronal injury and neuroinflammation is the activation of microglia. Activated microglia are found not only in the focal inflammatory lesions, but also diffusely in the normal‐appearing white matter (NAWM), especially in progressive MS. The purine base, adenosine is a ubiquitous neuromodulator in the CNS and also participates in the regulation of inflammation. The effect of adenosine mediated via adenosine A2A receptors has been linked to microglial activation, whereas modulating A2A receptors may exert neuroprotective effects. In the majority of patients, MS presents with a relapsing disease course, later advancing to a progressive phase characterised by a worsening, irreversible disability. Disease modifying treatments can reduce the severity and progression in relapsing MS, but no efficient treatment exists for progressive MS. The aim of this research was to investigate the prevalence of adenosine A2A receptors and activated microglia in progressive MS by using in vivo positron emission tomography (PET) imaging and [11C]TMSX and [11C](R)‐PK11195 radioligands. Magnetic resonance imaging (MRI) with diffusion tensor imaging (DTI) was performed to evaluate structural brain damage. Non‐invasive input function methods were also developed for the analyses of [11C]TMSX PET data. Finally, histopathological correlates of [11C](R)‐PK11195 radioligand binding related to chronic MS lesions were investigated in post‐mortem samples of progressive MS brain using autoradiography and immunohistochemistry. [11C]TMSX binding to A2A receptors was increased in NAWM of secondary progressive MS (SPMS) patients when compared to healthy controls, and this correlated to more severe atrophy in MRI and white matter disintegration (reduced fractional anisotropy, FA) in DTI. The non‐invasive input function methods appeared as feasible options for brain [11C]TMSX images obviating arterial blood sampling. [11C](R)‐PK11195 uptake was increased in the NAWM of SPMS patients when compared to patients with relapsing MS and healthy controls. Higher [11C](R)‐PK11195 binding in NAWM and total perilesional area of T1 hypointense lesions was associated with more severe clinical disability, increased brain atrophy, higher lesion load and reduced FA in NAWM in the MS patients. In autoradiography, increased perilesional [11C](R)‐PK11195 uptake was associated with increased microglial activation identified using immunohistochemistry. In conclusion, brain [11C]TMSX PET imaging holds promise in the evaluation of diffuse neuroinflammation in progressive MS. Being a marker of microglial activation, [11C](R)‐ PK11195 PET imaging could possibly be used as a surrogate biomarker in the evaluation of the neuroinflammatory burden and clinical disease severity in progressive MS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Obesity is one of the key challenges to health care system worldwide and its prevalence is estimated to rise to pandemic proportions. Numerous adverse health effects follow with increasing body weight, including increased risk of hypertension, diabetes, hypercholesterolemia, musculoskeletal pain and cancer. Current evidence suggests that obesity is associated with altered cerebral reward circuit functioning and decreased inhibitory control over appetitive food cues. Furthermore, obesity causes adverse shifts in metabolism and loss of structural integrity within the brain. Prior cross-sectional studies do not allow delineating which of these cerebral changes are recoverable after weight loss. We compared morbidly obese subjects with healthy controls to unravel brain changes associated with obesity. Bariatric surgery was used as an intervention to study which cerebral changes are recoverable after weight loss. In Study I we employed functional magnetic resonance imaging (fMRI) to detect the brain basis of volitional appetite control and its alterations in obesity. In Studies II-III we used diffusion tensor imaging (DTI) and voxel-based morphometry (VBM) to quantify the effects of obesity and the effects of weight loss on structural integrity of the brain. In study IV we used positron emission tomography (PET) with [18F]-FDG in fasting state and during euglycemic hyperinsulinemia to quantify effects of obesity and weight loss on brain glucose uptake. The fMRI experiment revealed that a fronto-parietal network is involved in volitional appetite control. Obese subjects had lower medial frontal and dorsal striatal brain activity during cognitive appetite control and increased functional connectivity within the appetite control circuit. Obese subjects had initially lower grey matter and white matter densities than healthy controls in VBM analysis and loss of integrity in white matter tracts as measured by DTI. They also had initially elevated glucose metabolism under insulin stimulation but not in fasting state. After the weight loss following bariatric surgery, obese individuals’ brain volumes recovered and the insulin-induced increase in glucose metabolism was attenuated. In conclusion, obesity is associated with altered brain function, coupled with loss of structural integrity and elevated glucose metabolism, which are likely signs of adverse health effects to the brain. These changes are reversed by weight loss after bariatric surgery, implicating that weight loss has a causal role on these adverse cerebral changes. Altogether these findings suggest that weight loss also promotes brain health.Key words: brain, obesity, bariatric surgery, appetite control, structural magnetic resonance

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Käänteinen kulttuurisokki on ilmiö, josta on puhuttu Suomessa vain vähän, vaikka opiskelijavaihdon suosio on kasvussa. Tässä tutkielmassa kysyn, miten Turun yliopiston opiskelijavaihtoon osallistuneet opiskelijat kokivat paluun Suomeen vuoden kestäneen vaihtojakson jälkeen. Aihetta lähestytään vaihtokohteessa koetun kulttuurisokin kautta, sillä ulkomailla vietetyn ajan kokemukset auttavat ymmärtämään paluukokemuksia. Tutkielman aineisto on kerätty löyhästi strukturoituina teemahaastatteluina kymmeneltä yliopisto-opiskelijalta. Aineistoa analysoitiin hyödyntämällä elementtejä sekä fenomenologiasta että fenomenografiasta. Haastattelujen merkitysyksiköistä muodostettiin tulosavaruus, jonka pohjalta kirjoitettiin tutkimuksen tulokset haastateltavien kollektiivisena kokemuksena. Tutkimuksen tulokset etenevät kronologisessa järjestyksessä siten, että aluksi kartoitetaan tunnelmia vaihtoon lähtiessä ja ulkomailla koettu mahdollinen kulttuurisokki. Sen jälkeen keskitytään paluuseen valmistautumiseen ja siihen liittyviin tuntemuksiin. Itse paluukokemuksien ja paluusta selviytymisen jälkeen pohditaan, mitä vaihtojaksosta jäi käteen: “kolmas tila”, josta tarkkaillaan kotimaata uudesta näkökulmasta, muutoksia persoonallisuudessa ja maailmankatsomuksessa, kielitaitoa ja uusia mielenkiinnon kohteita. Paluuseen kuitenkin liittyy usein myös negatiivisia tunteita siitä, että lähipiiri ei täysin ymmärrä ulkomaanjakson kokemuksia. Haastateltavat eivät kuitenkaan tunteneet itseään ulkopuolisiksi Suomessa, vaikka muuten kansallisessa identiteetissä olikin osaksi tapahtunut muutoksia. Analyysin päättää kuvaus haastateltavien tulevaisuuden suunnitelmista, joihin kaikilla kuului vielä mahdollisena lähtö ulkomaille uudestaan, vaikka pitkällä tähtäimellä tulevaisuus usein nähtiinkin Suomessa. Haastateltavien kokemuksista etsitään analyysissa yhtäläisyyksiä ja eroja aikaisempaan tutkimukseen, jota tässä tutkimuksessa edustavat erityisesti Kalervo Oberg, Stephen Bochner, Peter Adler, Kevin F. Gaw ja Craig Storti. Lopuksi pohditaan mahdollisia keinoja käänteistä kulttuurisokkia helpottamaan.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Obesity is a major challenge to human health worldwide. Little is known about the brain mechanisms that are associated with overeating and obesity in humans. In this project, multimodal neuroimaging techniques were utilized to study brain neurotransmission and anatomy in obesity. Bariatric surgery was used as an experimental method for assessing whether the possible differences between obese and non-obese individuals change following the weight loss. This could indicate whether obesity-related altered neurotransmission and cerebral atrophy are recoverable or whether they represent stable individual characteristics. Morbidly obese subjects (BMI ≥ 35 kg/m2) and non-obese control subjects (mean BMI 23 kg/m2) were studied with positron emission tomography (PET) and magnetic resonance imaging (MRI). In the PET studies, focus was put on dopaminergic and opioidergic systems, both of which are crucial in the reward processing. Brain dopamine D2 receptor (D2R) availability was measured using [11C]raclopride and µ-opioid receptor (MOR) availability using [11C]carfentanil. In the MRI studies, voxel-based morphometry (VBM) of T1-weighted MRI images was used, coupled with diffusion tensor imaging (DTI). Obese subjects underwent bariatric surgery as their standard clinical treatment during the study. Preoperatively, morbidly obese subjects had significantly lower MOR availability but unaltered D2R availability in several brain regions involved in reward processing, including striatum, insula, and thalamus. Moreover, obesity disrupted the interaction between the MOR and D2R systems in ventral striatum. Bariatric surgery and concomitant weight loss normalized MOR availability in the obese, but did not influence D2R availability in any brain region. Morbidly obese subjects had also significantly lower grey and white matter densities globally in the brain, but more focal changes were located in the areas associated with inhibitory control, reward processing, and appetite. DTI revealed also signs of axonal damage in the obese in corticospinal tracts and occipito-frontal fascicles. Surgery-induced weight loss resulted in global recovery of white matter density as well as more focal recovery of grey matter density among obese subjects. Altogether these results show that the endogenous opioid system is fundamentally linked to obesity. Lowered MOR availability is likely a consequence of obesity and may mediate maintenance of excessive energy uptake. In addition, obesity has adverse effects on brain structure. Bariatric surgery however reverses MOR dysfunction and recovers cerebral atrophy. Understanding the opioidergic contribution to overeating and obesity is critical for developing new psychological or pharmacological treatments for obesity. The actual molecular mechanisms behind the positive change in structure and neurotransmitter function still remain unclear and should be addressed in the future research.