7 resultados para Bivariate survival function

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transcription factors play a crucial role in the regulation of cell behavior by modulating gene expression profiles. Previous studies have described a dual role for the AP-1 family transcription factor c-Jun in the regulation of cellular fate. In various cell types weak and transient activations of c-Jun N-terminal kinase (JNK) and c-Jun appear to contribute to proliferation and survival, whereas strong and prolonged activation of JNK and c-Jun result in apoptosis. These opposite roles played by c-Jun are cell type specific and the molecular mechanisms defining these antonymous c-Jun-mediated responses remain incompletely understood. c-Jun activity in transformed cells is regulated by signalling cascades downstream of oncoproteins such as Ras and Raf. In addition, the pro-proliferative role and the survival promoting function for c-Jun has been described in various cancer models. Furthermore, c-Jun was described to be overexpressed in different cancer types. However, the molecular mechanisms by which c-Jun exerts these oncogenic functions are not all clearly established. Therefore it is of primary interest to further identify molecular mechanisms and functions for c-Jun in cancer. Regulation of gene expression is tightly dependent on accurate protein-protein interactions. Therefore, co-factors for c-Jun may define the functions for c-Jun in cancer. Identification of protein-protein interactions promoting cancer may provide novel possibilities for cancer treatment. In this study, we show that DNA topoisomerase I (TopoI) is a transcriptional co-factor for c-Jun. Moreover, c-Jun and TopoI together promote expression of epidermal growth factor receptor (EGFR) in cancer cells. We also show that the clinically used TopoI inhibitor topotecan reduces EGFR expression. Importantly, the effect of TopoI on EGFR transcription was shown to depend on c-Jun as Jun-/- cells or cells treated with JNK inhibitor SP600125 are resistant to topotecan treatment both in regulation of EGFR expression and cell proliferation. Moreover, c-Jun regulates the nucleolar localization and the function of the ribonucleic acid (RNA) helicase DDX21, a previously identified member of c-Jun protein complex. In addition, c-Jun stimulates rRNA processing by supporting DDX21 rRNA binding. Finally, this study characterizes a DDX21 dependent expression of cyclin dependent kinase (Cdk) 6, a correlation of DDX21 expression with prostate cancer progression and a substrate binding dependency of DDX21 nucleolar localization in prostate cancer cells. Taken together, the results of this study validate the c-Jun-TopoI interaction and precise the c-Jun-DDX21 interaction. Moreover, these results show the importance for protein-protein interaction in the regulation of their cellular functions in cancer cell behavior. Finally, the results presented here disclose new exciting therapeutic opportunities for cancer treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lower extremity peripheral arterial disease (PAD) is associated with decreased functional status, diminished quality of life (QoL), amputation, myocardial infarction, stroke, and death. Nevertheless, public awareness of PAD as a morbid and mortal disease is low. The aim of this study was to assess the incidence of major lower extremity amputation due to PAD, the extent of reamputations, and survival after major lower extremity amputation (LEA) in a population based PAD patient cohort. Furthermore, the aim was to assess the functional capacity in patients with LEA, and the QoL after lower extremity revascularization and major amputation. All 210 amputees due to PAD in 1998–2002 and all 519 revascularized patients in 1998–2003 were explored. 59 amputees alive in 2004 were interviewed using a structured questionnaire of QoL. Two of each amputee age-, gender- and domicile-matched controls filled in and returned postal self-administered QoL questionnaire as well as 231 revascularized PAD patients (the amount of these patients who engaged themselves to the study), and one control person for each patient completed postal self-administered QoL questionnaire. The incidence rate of major LEA was 24.1/100 000 person-years and it was considerably high during the years studied. The one-month mortality rate was 21%, 52% at one-year, and the overall mortality rate was 80%. When comparing the one-year mortality risk of amputees, LEAs were associated with a 7.4-fold annual mortality risk compared with the reference population in Turku. Twenty-two patients (10%) had ipsilateral transversions from BK to AK amputation. Fifty patients (24%) ended up with a contralateral major LEA within two to four amputation operations. Three bilateral amputations were performed at the first major LEA operation. Of the 51 survivors returning home after their first major LEA, 36 (71%) received a prosthesis; (16/36, 44%) and were able to walk both in- and outdoors. Of the 68 patients who were discharged to institutional care, three (4%) had a prosthesis one year after LEA. Both amputees and revascularized patients had poor physical functioning and significantly more depressive symptoms than their controls. Depressive symptoms were more common in the institutionalized amputees than the home-dwelling amputees. The surviving amputees and their controls had similar life satisfaction. The amputees felt themselves satisfied and contented, whether or not they lived in long-term care or at home. PAD patients who had undergone revascularizations had poorer QoL than their controls. The revascularized patients’ responses on their perceived physical functioning gave an impression that these patients are in a declining life cycle and that revascularizations, even when successful, may not be sufficient to improve the overall function. It is possible that addressing rehabilitation issues earlier in the care may produce a more positive functional outcome. Depressive symptoms should be recognized and thoroughly considered at the same time the patients are recovering from their revascularization operation. Also primary care should develop proper follow-up, and community organizations should have exercise groups for those who are able to return home, since they very often live alone. In rehabilitation programs we should consider not only physical disability assessment but also QoL.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

B lymphocytes constitute a key branch of adaptive immunity by providing specificity to recognize a vast variety of antigens by B cell antigen receptors (BCR) and secreted antibodies. Antigen recognition activates the cells and can produce antibody secreting plasma cells via germinal center reaction that leads to the maturation of antigen recognition affinity and switching of antibody effector class. The specificity of antigen recognition is achieved through a multistep developmental pathway that is organized by interplay of transcription factors and signals through BCR. Lymphoid malignancies arise from different stages of development in abnormal function of transcriptional regulation. To understand the B cell development and the function of B cells, a thorough understanding of the regulation of gene expression is important. The transcription factors of the Ikaros family and Bcl6 are frequently associated with lymphoma generation. The aim of this study was to reveal the targets of Ikaros, Helios and Bcl6 mediated gene regulation and to find out the function of Ikaros and Helios in B cells. This study uses gene targeted DT40 B cell lines and establishes a role for Ikaros family factors Ikaros and Helios in the regulation of BCR signaling that is important at developmental checkpoints, for cell survival and in activation. Ikaros and Helios had opposing roles in the regulation of BCR signals. Ikaros was found to directly repress the SHIP gene that encodes a signaling lipid-metabolizing enzyme, whereas Helios had activating effect on SHIP expression. The findings demonstrate a balancing function for these two Ikaros family transcription factors in the regulation of BCR signaling as well as in the regulation of gene expression. Bcl6 was found to repress plasma cell gene expression program while maintaining gene expression profile of B cells. Analysis of direct Bcl6 target genes suggested novel mechanisms for Bcl6-mediated suppression of plasma cell differentiation and promoting germinal center phenotype.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation studies the signaling events mediated by the extracellular superoxide dismutase (SOD3). SOD3 is an antioxidant enzyme which converts the harmful superoxide into hydrogen peroxide. Overproduction of these reactive oxygen species (ROS) in the cellular environment as a result of tissue injury or impaired antioxidant defense system has detrimental effects on tissue integrity and function. However, especially hydrogen peroxide is also an important signaling agent. Ischemic injury in muscle causes acute oxidative stress and inflammation. We investigated the ability of SOD3 to attenuate ischemia induced inflammation and to promote recovery of skeletal muscle tissue. We found that SOD3 can downregulate the expression of several inflammatory cytokines and cell adhesion molecules thus preventing the accumulation of oxidant-producing inflammatory cells. Secondly, SOD3 was able to promote long-term activation of the mitogenic Erk pathway, but increased only briefly the activity of pro-survival Akt pathway at an early stage of ischemic inflammation, thus reducing apoptosis. SOD3 is a prominent antioxidant in the thyroid gland where oxidative stress is constantly present. We investigated the role of SOD3 in normal thyroid follicular cells and the changes in its expression in various hyperproliferative disorders. We first showed that SOD3 is TSH-responsive which indicated its participation in thyroid function. Its principal function seems to be in follicular cell proliferation since knockdown cells were deficient in proliferation. Additionally, it was overexpressed in goiter tissue. However, SOD3 was consistently downregulated in thyroid cancer cell lines and tissues. In conclusion, SOD3 is involved in tissue maintenance, cell proliferation and inflammatory cell migration. Its mechanisms of action are the activation of known proliferation/survival pathways, inhibition of apoptosis and regulation of adhesion molecule expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Matrix metalloproteinase-13 (MMP-13) is a potent proteolytic enzyme, whose expression has been previously associated with fetal bone development and postnatal bone remodeling and with adult gingival wound healing. MMP-13 is also known to be involved in the growth and invasion of various cancers including squamous cell carcinoma (SCC) of the skin. The aim of this study was to further elucidate the function and regulation of MMP-13 in wound repair and cancer. In this study, it was shown that fetal skin fibroblasts express MMP-13 in response to transforming growth factor-β in a p38 MAP kinase dependent manner. In addition, MMP-13 was found to be expressed in vivo by wound fibroblasts in human fetal skin grafted on SCID mice. Adenovirally delivered expression of MMP-13 enhanced collagen matrix contraction by fibroblasts in vitro in association with altered cytoskeletal structure, enhanced proliferation and survival. These results indicate that MMP-13 is involved in cell-mediated collagen matrix remodeling and suggest a role for MMP-13 in superior matrix remodeling and scarless healing of fetal skin wounds. Using an MMP-13 deficient mouse strain, it was shown that MMP-13 is essential for the normal development of experimental granulation tissue in mice. MMP-13 was implicated in the regulation of myofibroblast function and angiogenesis and the expression of genes involved in cellular proliferation and movement, immune response, angiogenesis and proteolysis. Finally, epidermal mitogen, keratinocyte growth factor (KGF) was shown to suppress the malignant properties of skin SCC cells by downregulating the expression of several target genes with potential cancer promoting properties, including MMP-13, and by reducing SCC cell invasion. These results provide evidence that MMP-13 potently regulates cell viability, myofibroblast function and angiogenesis associated with wound healing and cancer. In addition, fibroblasts expressing MMP-13 show high collagen reorganization capacity. Moreover, the results suggest that KGF mediates the anti-cancer effects on skin SCC

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most advanced tumours face periods of reduced oxygen availability i.e. hypoxia. During these periods tumour cells undergo adaptive changes enabling their survival under adverse conditions. In cancer hypoxia-induced cellular changes cause tumour progression, hinder cancer treatment and are indicative of poor prognosis. Within cells the main regulator of hypoxic responses is the hypoxia-inducible factor (HIF). HIF governs the expression of over a hundred hypoxia-inducible genes that regulate a number of cellular functions such as angiogenesis, glucose metabolism and cell migration. Therefore the activity of HIF must be tightly governed. HIF is regulated by a family of prolyl hydroxylase enzymes, PHDs, which mark HIF for destruction in normoxia. Under hypoxic conditions PHDs lose much of their enzymatic activity as they need molecular oxygen as a cofactor. Out of the three PHDs (PHD1, 2 and 3) PHD2 has been considered to be the main HIF-1 regulator in normoxic conditions. PHD3 on the other hand shows the most robust induction in response to oxygen deprivation and it has been implied as the main HIF-1 regulator under prolonged hypoxia. SQSTM1/p62 (p62) is an adaptor protein that functions through its binding motifs to bring together proteins in order to regulate signal transduction. In non-stressed situations p62 levels are kept low but its expression has been reported to be upregulated in many cancers. It has a definitive role as an autophagy receptor and as such it serves a key function in cancer cell survival decisions. In my thesis work I evaluated the significance of PHD3 in cancer cell and tumour biology. My results revealed that PHD3 has a dual role in cancer cell fate. First, I demonstrated that PHD3 forms subcellular protein aggregates in oxygenated carcinoma cells and that this aggregation promotes apoptosis induction in a subset of cancer cells. In these aggregates an adaptor protein SQSTM1/p62 interacts with PHD3 and in so doing regulates PHD3 expression. SQSTM1/p62 expression is needed to keep PHD3 levels low in normoxic conditions. Its levels rapidly decrease in response to hypoxia allowing PHD3 protein levels to be upregulated and the protein to be diffusely expressed throughout the cell. The interaction between PHD3 and SQSTM1/p62 limits the ability of PHD3 to function on its hydroxylation target protein HIF-1alpha. Second, the results indicate that when PHD3 is upregulated under hypoxia it protects cancer cells by allowing cell cycle to proceed from G1 to S-phase. My data demonstrates that PHD3 may either cause cell death or protect the cells depending on its expression pattern and the oxygen availability of tumours.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cell is continuously subjected to various forms of external and intrinsic proteindamaging stresses, including hyperthermia, pathophysiological states, as well as cell differentiation and proliferation. Proteindamaging stresses result in denaturation and improper folding of proteins, leading to the formation of toxic aggregates that are detrimental for various pathological conditions, including Alzheimer’s and Huntington’s diseases. In order to maintain protein homeostasis, cells have developed different cytoprotective mechanisms, one of which is the evolutionary well-conserved heat shock response. The heat shock response results in the expression of heat shock proteins (Hsps), which act as molecular chaperones that bind to misfolded proteins, facilitate their refolding and prevent the formation of protein aggregates. Stress-induced expression of Hsps is mediated by a family of transcription factors, the heat shock factors, HSFs. Of the four HSFs found in vertebrates, HSF1-4, HSF1 is the major stress-responsive factor that is required for the induction of the heat shock response. HSF2 cannot alone induce Hsps, but modulates the heat shock response by forming heterotrimers with HSF1. HSFs are not only involved in the heat shock response, but they have also been found to have a function in development, neurodegenerative disorders, cancer, and longevity. Therefore, insight into how HSFs are regulated is important for the understanding of both normal physiological and disease processes. The activity of HSF1 is mainly regulated by intricate post-translational modifications, whereas the activity of HSF2 is concentrationdependent. However, there is only limited understanding of how the abundance of HSF2 is regulated. This study describes two different means of how HSF2 levels are regulated. In the first study it was shown that microRNA miR-18, a member of the miR-17~92 cluster, directly regulates Hsf2 mRNA stability and thus protein levels. HSF2 has earlier been shown to play a profound role in the regulation of male germ cell maturation during the spermatogenesis. The effect on miR-18 on HSF2 was examined in vivo by transfecting intact seminiferous tubules, and it was found that inhibition of miR-18 resulted in increased HSF2 levels and modified expression of the HSF2 targets Ssty2 and Speer4a. HSF2 has earlier been reported to modulate the heat shock response by forming heterotrimers with HSF1. In the second study, it was shown that HSF2 is cleared off the Hsp70 promoter and degraded by the ubiquitinproteasome pathway upon acute stress. By silencing components of the anaphase promoting complex/cyclosome (APC/C), including the co-activators Cdc20 and Cdh1, it was shown that APC/C mediates the heatinduced ubiquitylation of HSF2. Furthermore, down-regulation of Cdc20 was shown to alter the expression of heat shock-responsive genes. Next, we studied if APC/C-Cdc20, which controls cell cycle progression, also regulates HSF2 during the cell cycle. We found that both HSF2 mRNA and protein levels decreased during mitosis in several but not all human cell lines, indicating that HSF2 has a function in mitotic cells. Interestingly, although transcription is globally repressed during mitosis, mainly due to the displacement of RNA polymerase II and transcription factors, including HSF1, from the mitotic chromatin, HSF2 is capable of binding DNA during mitosis. Thus, during mitosis the heat shock response is impaired, leaving mitotic cells vulnerable to proteotoxic stress. However, in HSF2-deficient mitotic cells the Hsp70 promoter is accessible to both HSF1 and RNA polymerase II, allowing for stress-inducible Hsp expression to occur. As a consequence HSF2-deficient mitotic cells have a survival advantage upon acute heat stress. The results, presented in this thesis contribute to the understanding of the regulatory mechanisms of HSF2 and its function in the heat shock response in both interphase and mitotic cells.