7 resultados para Bio-optical model

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

WDM (Wavelength-Division Multiplexing) optiset verkot on tällä hetkellä suosituin tapa isojen määrän tietojen siirtämiseen. Jokaiselle liittymälle määrätään reitin ja aallonpituus joka linkin varten. Tarvittavan reitin ja aallon pituuden löytäminen kutsutaan RWA-ongelmaksi. Tämän työn kuvaa mahdollisia kustannuksen mallein ratkaisuja RWA-ongelmaan. Olemassa on paljon erilaisia optimoinnin tavoitteita. Edellä mainittuja kustannuksen malleja perustuu näillä tavoitteilla. Kustannuksen malleja antavat tehokkaita ratkaisuja ja algoritmeja. The multicommodity malli on käsitelty tässä työssä perusteena RV/A-kustannuksen mallille. Myöskin OB käsitelty heuristisia menetelmiä RWA-ongelman ratkaisuun. Työn loppuosassa käsitellään toteutuksia muutamalle mallille ja erilaisia mahdollisuuksia kustannuksen mallein parantamiseen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel cantilever pressure sensor was developed in the Department of Physics at the University of Turku in order to solve the sensitivity problems which are encountered when condenser microphones are used in photoacoustic spectroscopy. The cantilever pressure sensor, combined with a laser interferometer for the measurement of the cantilever movements, proved to be highly sensitive. The original aim of this work was to integrate the sensor in a photoacoustic gas detector working in a differential measurement scheme. The integration was made successfully into three prototypes. In addition, the cantilever was also integrated in the photoacoustic FTIR measurement schemes of gas-, liquid-, and solid-phase samples. A theoretical model for the signal generation in each measurement scheme was created and the optimal celldesign discussed. The sensitivity and selectivity of the differential method were evaluated when a blackbody radiator and a mechanical chopper were used with CO2, CH4, CO, and C2H4 gases. The detection limits were in the sub-ppm level for all four gases with only a 1.3 second integration time and the cross interference was well below one percent for all gas combinations other than those between hydrocarbons. Sensitivity with other infrared sources was compared using ethylene as an example gas. In the comparison of sensitivity with different infrared sources the electrically modulated blackbody radiator gave a 35 times higher and the CO2-laser a 100 times lower detection limit than the blackbody radiator with a mechanical chopper. As a conclusion, the differential system is well suited to rapid single gas measurements. Gas-phase photoacoustic FTIR spectroscopy gives the best performance, when several components have to be analyzed simultaneously from multicomponent samples. Multicomponent measurements were demonstrated with a sample that contained different concentrations of CO2, H2O, CO, and four different hydrocarbons. It required an approximately 10 times longer measurement time to achieve the same detection limit for a single gas as with the differential system. The properties of the photoacoustic FTIR spectroscopy were also compared to conventional transmission FTIR spectroscopy by simulations. Solid- and liquid-phase photoacoustic FTIR spectroscopy has several advantages compared to other techniques and therefore it also has a great variety of applications. A comparison of the signal-to-noise ratio between photoacoustic cells with a cantilever microphone and a condenser microphone was done with standard carbon black, polyethene, and sunflower oil samples. The cell with the cantilever microphone proved to have a 5-10 times higher signal-to-noise ratio than the reference detector, depending on the sample. Cantilever enhanced photoacoustics will be an effective tool for gas detection and analysis of solid- and liquid-phase samples. The preliminary prototypes gave good results in all three measurement schemes that were studied. According to simulations, there are possibilities for further enhancement of the sensitivity, as well as other properties, of each system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thesis aims to build a coherent view and understanding of the innovation process and organizational technology adoption in Finnish bio-economy companies with a focus on innovations of a disruptive nature. Disruptive innovations are exceptional hence in order to create generalizations and a unified view of the subject the perspective is also on less radical innovations. Other interests of the thesis are how ideas are discovered and generated and how the nature of the innovation and size of the company affect the technology adoption and innovation process. The data was collected by interviewing six small and six large Finnish bio-economy companies. The results suggest companies regardless of size consider innovation as a core asset in the competitive markets. Organizations want to be considered innovators and early adopters yet these qualities are limited by certain, mainly resource-based factors. In addition the industry, scalability and Finland’s geographical location when seeking funding provide certain challenges. The innovation process may be considered relatively similar whether the idea or technology stems from an internal or external source suggesting the technology adoption process can in fact be linked to the innovation process theories. Thus the thesis introduces a new theoretical model which based on the results of the study and the theories of technology adoption and innovation process aims on characterizing how ideas and technology from both external and internal sources generate into innovations. The innovation process is in large bio-economy companies most often similar to or a modified version of the stage-gate model, while small companies generally have less structured processes. Nevertheless the more disruptive the innovation, the less it fits in the structured processes. This implies disruptive innovation cannot be put in a certain mould but it is rather processed case-by-case.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optical coherence tomography (OCT) is a novel intracoronary imaging application for the assessment of native lesions and coronary stents. The purpose of this thesis was to evaluate the safety and feasibility of frequency-domain OCT (FD-OCT) based on experiences of the Satakunta Central Hospital (I). Early vascular healing was evaluated after implantation of endothelial progenitor cell capturing (II) and bio-active titanium-nitride-oxide coated stents (III) in two studies, each with 20 patients. Vascular healing was also compared after implantation of bio-active and everolimus-eluting stents on 28 patients after 9-month follow-up (IV). Long-term vascular healing of bio-active and paclitaxel-eluting stents was assessed in the last study with 18 patients (V). The results indicate that FD-OCT is safe and feasible (I). Both bio-active and endothelial progenitor cell capturing stents showed near-complete endothelialisation after one-month follow-up, which is desirable when prolonged dual anti-platelet therapy needs to be avoided after stenting (II and III). Endothelialisation of bio-active stents showed a predictable pattern at mid-term and long-term follow up (IV and V). Endothelialisation of everolimus-eluting stents was not complete at 9 months follow-up, which may suggest that interruption of dual antiplatelet therapy at this time point may not be safe (IV). Finally, delayed vascular healing may be present in patients treated with paclitaxel-eluting stents as long as 4 years from implantation, which reinforces the previously raised concerns on the long-term safety of this device (V).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rare-earth based upconverting nanoparticles (UCNPs) have attracted much attention due to their unique luminescent properties. The ability to convert multiple photons of lower energy to ones with higher energy through an upconversion (UC) process offers a wide range of applications for UCNPs. The emission intensities and wavelengths of UCNPs are important performance characteristics, which determine the appropriate applications. However, insufficient intensities still limit the use of UCNPs; especially the efficient emission of blue and ultraviolet (UV) light via upconversion remains challenging, as these events require three or more near-infrared (NIR) photons. The aim of the study was to enhance the blue and UV upconversion emission intensities of Tm3+ doped NaYF4 nanoparticles and to demonstrate their utility in in vitro diagnostics. As the distance between the sensitizer and the activator significantly affect the energy transfer efficiency, different strategies were explored to change the local symmetry around the doped lanthanides. One important strategy is the intentional co-doping of active (participate in energy transfer) or passive (do not participate in energy transfer) impurities into the host matrix. The roles of doped passive impurities (K+ and Sc3+) in enhancing the blue and UV upconversions, as well as in influencing the intense UV upconversion emission through excess sensitization (active impurity) were studied. Additionally, the effects of both active and passive impurity doping on the morphological and optical performance of UCNPs were investigated. The applicability of UV emitting UCNPs as an internal light source for glucose sensing in a dry chemistry test strip was demonstrated. The measurements were in agreement with the traditional method based on reflectance measurements using an external UV light source. The use of UCNPs in the glucose test strip offers an alternative detection method with advantages such as control signals for minimizing errors and high penetration of the NIR excitation through the blood sample, which gives more freedom for designing the optical setup. In bioimaging, the excitation of the UCNPs in the transparent IR region of the tissue permits measurements, which are free of background fluorescence and have a high signal-to-background ratio. In addition, the narrow emission bandwidth of the UCNPs enables multiplexed detections. An array-in-well immunoassay was developed using two different UC emission colours. The differentiation between different viral infections and the classification of antibody responses were achieved based on both the position and colour of the signal. The study demonstrates the potential of spectral and spatial multiplexing in the imaging based array-in-well assays.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, bacteriorhodopsin (BR) photosensor’s optical and electrical properties were studied. The BR sensor consisted of a dry film with BR in polyvinyl alcohol and covered with transparent conductors. In the experiments the BR photocycle was started with two lasers. The characteristics of the BR sensor were measured in two ways. The first approach was theoretical and it required knowing the laser parameters. The second way required assembling a measurement setup for the optical response measurements. However, no measurable results were obtained due to low laser power. The photoelectric response was measured in the experiments with two laser systems and the amplifier was tested. In the experiment with a Cavitar laser, the photoelectric response was obtained. In the experiment with FemtoFiber Pro laser, the photoelectric response was not measured. The expected amplitude of the response was obtained. The experimental data was analyzed and possible solutions for reducing the interference were given.