17 resultados para Atomic crystal images
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Crystal growth is an essential phase in crystallization kinetics. The rate of crystal growth provides significant information for the design and control of crystallization processes; nevertheless, obtaining accurate growth rate data is still challenging due to a number of factors that prevail in crystal growth. In industrial crystallization, crystals are generally grown from multi-componentand multi-particle solutions under complicated hydrodynamic conditions; thus, it is crucial to increase the general understanding of the growth kinetics in these systems. The aim of this work is to develop a model of the crystal growth rate from solution. An extensive literature review of crystal growth focuses on themodelling of growth kinetics and thermodynamics, and new measuring techniques that have been introduced in the field of crystallization. The growth of a singlecrystal is investigated in binary and ternary systems. The binary system consists of potassium dihydrogen phosphate (KDP, crystallizing solute) and water (solvent), and the ternary system includes KDP, water and an organic admixture. The studied admixtures, urea, ethanol and 1-propanol, are employed at relatively highconcentrations (of up to 5.0 molal). The influence of the admixtures on the solution thermodynamics is studied using the Pitzer activity coefficient model. Theprediction method of the ternary solubility in the studied systems is introduced and verified. The growth rate of the KDP (101) face in the studied systems aremeasured in the growth cell as a function of supersaturation, the admixture concentration, the solution velocity over a crystal and temperature. In addition, the surface morphology of the KDP (101) face is studied using ex situ atomic force microscopy (AFM). The crystal growth rate in the ternary systems is modelled on the basis of the two-step growth model that contains the Maxwell-Stefan (MS) equations and a surface-reaction model. This model is used together with measuredcrystal growth rate data to develop a new method for the evaluation of the model parameters. The validation of the model is justified with experiments. The crystal growth rate in an imperfectly mixed suspension crystallizer is investigatedusing computational fluid dynamics (CFD). A solid-liquid suspension flow that includes multi-sized particles is described by the multi-fluid model as well as by a standard k-epsilon turbulence model and an interface momentum transfer model. The local crystal growth rate is determined from calculated flow information in a diffusion-controlled crystal growth regime. The calculated results are evaluated experimentally.
Resumo:
The objective of the thesis is to study cerium oxide thin films grown by the atomic layer deposition (ALD) for soot removal. Cerium oxide is one of the most important heterogeneous catalysts and can be used in particulate filters and sensors in a diesel exhaust pipe. Its redox/oxidation properties are a key factor in soot oxidation. Thus, the cerium oxide coating can help to keep particulate filters and sensors clean permanently. The literature part of the thesis focuses on the soot removal, introducing the origin and structure of soot, reviewing emissions standards for diesel particulate matter, and presenting methods and catalysts for soot removal. In the experimental part the optimal ALD conditions for cerium oxide were found, the structural properties of cerium oxide thin films were analyzed, and the catalytic activity of the cerium oxide for soot oxidation was investigated. Studying ALD growth conditions of cerium oxide films and determining their critical thickness range are important to maximize the catalytic performance operating at comparatively low temperature. It was found that the cerium oxide film deposited at 300 °C with 2000 ALD cycles had the highest catalytic activity. Although the activity was still moderate and did not decrease the soot oxidation temperature enough for a real-life application. The cerium oxide thin film deposited at 300 °C has a different crystal structure, surface morphology and elemental composition with a higher Ce3+ concentration compared to the films deposited at lower temperatures. The different properties of the cerium oxide thin film deposited at 300 °C increase the catalytic activity most likely due to higher surface area and addition of the oxygen vacancies.
Resumo:
Abstract
Resumo:
Tässä diplomityössä tutkitaan tekniikoita, joillavesileima lisätään spektrikuvaan, ja menetelmiä, joilla vesileimat tunnistetaanja havaitaan spektrikuvista. PCA (Principal Component Analysis) -algoritmia käyttäen alkuperäisten kuvien spektriulottuvuutta vähennettiin. Vesileiman lisääminen spektrikuvaan suoritettiin muunnosavaruudessa. Ehdotetun mallin mukaisesti muunnosavaruuden komponentti korvattiin vesileiman ja toisen muunnosavaruuden komponentin lineaarikombinaatiolla. Lisäyksessä käytettävää parametrijoukkoa tutkittiin. Vesileimattujen kuvien laatu mitattiin ja analysoitiin. Suositukset vesileiman lisäykseen esitettiin. Useita menetelmiä käytettiin vesileimojen tunnistamiseen ja tunnistamisen tulokset analysoitiin. Vesileimojen kyky sietää erilaisia hyökkäyksiä tarkistettiin. Diplomityössä suoritettiin joukko havaitsemis-kokeita ottamalla huomioon vesileiman lisäyksessä käytetyt parametrit. ICA (Independent Component Analysis) -menetelmää pidetään yhtenä mahdollisena vaihtoehtona vesileiman havaitsemisessa.
Resumo:
Monissasovelluksissa on hyvin tärkeää vähentää valolähteen vaikutusta kohteen oikean värin havainnoimiseksi. Tämä on tarpeen mm. virtuaalisissa museoissa, telelääketieteessä, verkkokaupassa ja verkkorahassa. Tässä tutkielmassa on kehitetty tekniikkaa kirkkaiden heijastusten poistoon spektrikuvista. Työ sisältää katsauksen yleisen värillisen kuvan ymmärtämiseen, mihin perustuen analysoitiin erilaisia kirkkaiden heijastusten poistO'tekniikoita. Työssä kehitettiin uusi kirkkaiden heijastusten poistO'menetelmä, joka perustuu dikromaattiseen heijastus-malliin, joka kuvaa spektrisen datan objektin omaan väriin ja valaisevan valon väriin perustuen. Ehdotettu kirkkaiden heijastusten poistO'menetelmä hyödyntää erilaisia olemassaolevia menetelmiä, kuten pääkomponenttimenetelmää ja tiedon luokittelu-menetelmää. Yritys kehittää nopeasti toimiva algoritmi, joka myös suoriutuu tehtävästä hyvin, on onnistunut. Kokeet toteutettiin ehdotetun menetelmän mukaisesti ja toimivalla algoritmilla saatiin halutut lopputulokset. Edelleentyö sisältää ehdotuksia esitetyn algoritmin parantamiseksi.
Resumo:
In this work GaN and AlGaN layers were grown by metal-organic chemical vapor deposition (MOCVD) on sapphire substrates. The research was carried out at Micro and Nanoscience Laboratory of Helsinki University of Technology. The objective of this thesis is the study of MOCVD technique for the growth of GaN and AlGaN films and optimization of growth parameters in purpose to improve crystal quality of the films. The widely used two-step and the new multistep methods have been used for GaN, AlGaN MOCVD growth on c-plane sapphire. Properties of the GaN and AlGaN layers were studied using in-situ reflectance monitoring during MOCVD growth, atomic force microscopy and x-ray diffraction. Compared to the two step method, the multistep method has produced even better qualities of the GaN and AlGaN layers and significant reduction of threading dislocation density.
Resumo:
The problem of selecting anappropriate wavelet filter is always present in signal compression based on thewavelet transform. In this report, we propose a method to select a wavelet filter from a predefined set of filters for the compression of spectra from a multispectral image. The wavelet filter selection is based on the Learning Vector Quantization (LVQ). In the training phase for the test images, the best wavelet filter for each spectrum has been found by a careful compression-decompression evaluation. Certain spectral features are used in characterizing the pixel spectra. The LVQ is used to form the best wavelet filter class for different types of spectra from multispectral images. When a new image is to be compressed, a set of spectra from that image is selected, the spectra are classified by the trained LVQand the filter associated to the largest class is selected for the compression of every spectrum from the multispectral image. The results show, that almost inevery case our method finds the most suitable wavelet filter from the pre-defined set for the compression.
Resumo:
Technological progress has made a huge amount of data available at increasing spatial and spectral resolutions. Therefore, the compression of hyperspectral data is an area of active research. In somefields, the original quality of a hyperspectral image cannot be compromised andin these cases, lossless compression is mandatory. The main goal of this thesisis to provide improved methods for the lossless compression of hyperspectral images. Both prediction- and transform-based methods are studied. Two kinds of prediction based methods are being studied. In the first method the spectra of a hyperspectral image are first clustered and and an optimized linear predictor is calculated for each cluster. In the second prediction method linear prediction coefficients are not fixed but are recalculated for each pixel. A parallel implementation of the above-mentioned linear prediction method is also presented. Also,two transform-based methods are being presented. Vector Quantization (VQ) was used together with a new coding of the residual image. In addition we have developed a new back end for a compression method utilizing Principal Component Analysis (PCA) and Integer Wavelet Transform (IWT). The performance of the compressionmethods are compared to that of other compression methods. The results show that the proposed linear prediction methods outperform the previous methods. In addition, a novel fast exact nearest-neighbor search method is developed. The search method is used to speed up the Linde-Buzo-Gray (LBG) clustering method.
Resumo:
The objective of industrial crystallization is to obtain a crystalline product which has the desired crystal size distribution, mean crystal size, crystal shape, purity, polymorphic and pseudopolymorphic form. Effective control of the product quality requires an understanding of the thermodynamics of the crystallizing system and the effects of operation parameters on the crystalline product properties. Therefore, obtaining reliable in-line information about crystal properties and supersaturation, which is the driving force of crystallization, would be very advantageous. Advanced techniques, such asRaman spectroscopy, attenuated total reflection Fourier transform infrared (ATR FTIR) spectroscopy, and in-line imaging techniques, offer great potential for obtaining reliable information during crystallization, and thus giving a better understanding of the fundamental mechanisms (nucleation and crystal growth) involved. In the present work, the relative stability of anhydrate and dihydrate carbamazepine in mixed solvents containing water and ethanol were investigated. The kinetics of the solvent mediated phase transformation of the anhydrate to hydrate in the mixed solvents was studied using an in-line Raman immersion probe. The effects of the operation parameters in terms of solvent composition, temperature and the use of certain additives on the phase transformation kineticswere explored. Comparison of the off-line measured solute concentration and the solid-phase composition measured by in-line Raman spectroscopy allowedthe identification of the fundamental processes during the phase transformation. The effects of thermodynamic and kinetic factors on the anhydrate/hydrate phase of carbamazepine crystals during cooling crystallization were also investigated. The effect of certain additives on the batch cooling crystallization of potassium dihydrogen phosphate (KDP) wasinvestigated. The crystal growth rate of a certain crystal face was determined from images taken with an in-line video microscope. An in-line image processing method was developed to characterize the size and shape of thecrystals. An ATR FTIR and a laser reflection particle size analyzer were used to study the effects of cooling modes and seeding parameters onthe final crystal size distribution of an organic compound C15. Based on the obtained results, an operation condition was proposed which gives improved product property in terms of increased mean crystal size and narrowersize distribution.
Resumo:
Vaatimus kuvatiedon tiivistämisestä on tullut entistä ilmeisemmäksi viimeisen kymmenen vuoden aikana kuvatietoon perustuvien sovellutusten myötä. Nykyisin kiinnitetään erityistä huomiota spektrikuviin, joiden tallettaminen ja siirto vaativat runsaasti levytilaa ja kaistaa. Aallokemuunnos on osoittautunut hyväksi ratkaisuksi häviöllisessä tiedontiivistämisessä. Sen toteutus alikaistakoodauksessa perustuu aallokesuodattimiin ja ongelmana on sopivan aallokesuodattimen valinta erilaisille tiivistettäville kuville. Tässä työssä esitetään katsaus tiivistysmenetelmiin, jotka perustuvat aallokemuunnokseen. Ortogonaalisten suodattimien määritys parametrisoimalla on työn painopisteenä. Työssä todetaan myös kahden erilaisen lähestymistavan samanlaisuus algebrallisten yhtälöiden avulla. Kokeellinen osa sisältää joukon testejä, joilla perustellaan parametrisoinnin tarvetta. Erilaisille kuville tarvitaan erilaisia suodattimia sekä erilaiset tiivistyskertoimet saavutetaan eri suodattimilla. Lopuksi toteutetaan spektrikuvien tiivistys aallokemuunnoksen avulla.
Resumo:
The purpose of this thesis is to present a new approach to the lossy compression of multispectral images. Proposed algorithm is based on combination of quantization and clustering. Clustering was investigated for compression of the spatial dimension and the vector quantization was applied for spectral dimension compression. Presenting algo¬rithms proposes to compress multispectral images in two stages. During the first stage we define the classes' etalons, another words to each uniform areas are located inside the image the number of class is given. And if there are the pixels are not yet assigned to some of the clusters then it doing during the second; pass and assign to the closest eta¬lons. Finally a compressed image is represented with a flat index image pointing to a codebook with etalons. The decompression stage is instant too. The proposed method described in this paper has been tested on different satellite multispectral images from different resources. The numerical results and illustrative examples of the method are represented too.
Resumo:
Tämä työ käsittelee puutukkien tilavuuden mittaamista värikonenäön avulla. Värikuvat on saatu Simpeleellä olevan metsäteollisuusyrityksen hiomosta. Työssä esitetään perusteellisesti matemaattinen teoria, joka liittyy käytettyihin kuvankäsittelymenetelmiin, kuten luokitteluun, kohinan poistoon ja tukkien segmentointiin. Esitetyt menetelmät implementointiin käytännössä ja eri menetelmillä saatuja tuloksia vertailtiin keskenään. Kuvankäsittelyalgoritmit on implementoitu Matlab 6.0:n avulla. Pääasiassa käytettiin uusinta Image Processing Toolboxia, joka on versio 3.0. Tämä työn näkökulma on pääasiassa käytäntöön soveltava, koska metsäteollsuus on korkealla tasolla Suomessa ja siellä on paljon alan yrityksiä, joissa tässä työssä kehitettyä menetelmää voidaan hyödyntää.
Resumo:
Main purpose of this thesis is to introduce a new lossless compression algorithm for multispectral images. Proposed algorithm is based on reducing the band ordering problem to the problem of finding a minimum spanning tree in a weighted directed graph, where set of the graph vertices corresponds to multispectral image bands and the arcs’ weights have been computed using a newly invented adaptive linear prediction model. The adaptive prediction model is an extended unification of 2–and 4–neighbour pixel context linear prediction schemes. The algorithm provides individual prediction of each image band using the optimal prediction scheme, defined by the adaptive prediction model and the optimal predicting band suggested by minimum spanning tree. Its efficiency has been compared with respect to the best lossless compression algorithms for multispectral images. Three recently invented algorithms have been considered. Numerical results produced by these algorithms allow concluding that adaptive prediction based algorithm is the best one for lossless compression of multispectral images. Real multispectral data captured from an airplane have been used for the testing.
Resumo:
Tämä diplomityö liittyy Spektrikuvien tutkimiseen tilastollisen kuvamallin näkökulmasta. Diplomityön ensimmäisessä osassa tarkastellaan tilastollisten parametrien jakaumien vaikutusta väreihin ja korostumiin erilaisissa valaistusolosuhteissa. Havaittiin, että tilastollisten parametrien väliset suhteet eivät riipu valaistusolosuhteista, mutta riippuvat kuvan häiriöttömyydestä. Ilmeni myös, että korkea huipukkuus saattaa aiheutua värikylläisyydestä. Lisäksi työssä kehitettiin tilastolliseen spektrimalliin perustuvaa tekstuurinyhdistämisalgoritmia. Sillä saavutettiin hyviä tuloksia, kun tilastollisten parametrien väliset riippuvuussuhteet olivat voimassa. Työn toisessa osassa erilaisia spektrikuvia tutkittiin käyttäen itsenäistä komponenttien analyysia (ICA). Seuraavia itsenäiseen komponenttien analyysiin tarkoitettuja algoritmia tarkasteltiin: JADE, kiinteän pisteen ICA ja momenttikeskeinen ICA. Tutkimuksissa painotettiin erottelun laatua. Paras erottelu saavutettiin JADE- algoritmilla, joskin erot muiden algoritmien välillä eivät olleet merkittäviä. Algoritmi jakoi kuvan kahteen itsenäiseen, joko korostuneeseen ja korostumattomaan tai kromaattiseen ja akromaattiseen, komponenttiin. Lopuksi pohditaan huipukkuuden suhdetta kuvan ominaisuuksiin, kuten korostuneisuuteen ja värikylläisyyteen. Työn viimeisessä osassa ehdotetaan mahdollisia jatkotutkimuskohteita.