16 resultados para Associative Classifiers
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Mobile malwares are increasing with the growing number of Mobile users. Mobile malwares can perform several operations which lead to cybersecurity threats such as, stealing financial or personal information, installing malicious applications, sending premium SMS, creating backdoors, keylogging and crypto-ransomware attacks. Knowing the fact that there are many illegitimate Applications available on the App stores, most of the mobile users remain careless about the security of their Mobile devices and become the potential victim of these threats. Previous studies have shown that not every antivirus is capable of detecting all the threats; due to the fact that Mobile malwares use advance techniques to avoid detection. A Network-based IDS at the operator side will bring an extra layer of security to the subscribers and can detect many advanced threats by analyzing their traffic patterns. Machine Learning(ML) will provide the ability to these systems to detect unknown threats for which signatures are not yet known. This research is focused on the evaluation of Machine Learning classifiers in Network-based Intrusion detection systems for Mobile Networks. In this study, different techniques of Network-based intrusion detection with their advantages, disadvantages and state of the art in Hybrid solutions are discussed. Finally, a ML based NIDS is proposed which will work as a subsystem, to Network-based IDS deployed by Mobile Operators, that can help in detecting unknown threats and reducing false positives. In this research, several ML classifiers were implemented and evaluated. This study is focused on Android-based malwares, as Android is the most popular OS among users, hence most targeted by cyber criminals. Supervised ML algorithms based classifiers were built using the dataset which contained the labeled instances of relevant features. These features were extracted from the traffic generated by samples of several malware families and benign applications. These classifiers were able to detect malicious traffic patterns with the TPR upto 99.6% during Cross-validation test. Also, several experiments were conducted to detect unknown malware traffic and to detect false positives. These classifiers were able to detect unknown threats with the Accuracy of 97.5%. These classifiers could be integrated with current NIDS', which use signatures, statistical or knowledge-based techniques to detect malicious traffic. Technique to integrate the output from ML classifier with traditional NIDS is discussed and proposed for future work.
Resumo:
This thesis is about detection of local image features. The research topic belongs to the wider area of object detection, which is a machine vision and pattern recognition problem where an object must be detected (located) in an image. State-of-the-art object detection methods often divide the problem into separate interest point detection and local image description steps, but in this thesis a different technique is used, leading to higher quality image features which enable more precise localization. Instead of using interest point detection the landmark positions are marked manually. Therefore, the quality of the image features is not limited by the interest point detection phase and the learning of image features is simplified. The approach combines both interest point detection and local description into one phase for detection. Computational efficiency of the descriptor is therefore important, leaving out many of the commonly used descriptors as unsuitably heavy. Multiresolution Gabor features has been the main descriptor in this thesis and improving their efficiency is a significant part. Actual image features are formed from descriptors by using a classifierwhich can then recognize similar looking patches in new images. The main classifier is based on Gaussian mixture models. Classifiers are used in one-class classifier configuration where there are only positive training samples without explicit background class. The local image feature detection method has been tested with two freely available face detection databases and a proprietary license plate database. The localization performance was very good in these experiments. Other applications applying the same under-lying techniques are also presented, including object categorization and fault detection.
Resumo:
Zinc selenide is a prospective material for optoelectronics. The fabrication of ZnSebased light-emitting diodes is hindered by complexity of p-type doping of the component materials. The interaction between native and impurity defects, the tendency of doping impurity to form associative centres with native defects and the tendency to self-compensation are the main factors impeding effective control of the value and type of conductivity. The thesis is devoted to the study of the processes of interaction between native and impurity defects in zinc selenide. It is established that the Au impurity has the most prominent amphoteric properties in ZnSe among Cu, Ag and Au impurities, as it forms a great number of both Au; donors and Auz„ acceptors. Electrical measurements show that Ag and Au ions introduced into vacant sites of the Zn sublattice form simple single-charged Agz„+ and Auzn+ states with d1° electron configuration, while Cu ions can form both single-charged Cuz„ (d1) and double-charged Cuzr`+ (d`o) centres. Amphoteric properties of Ag and Au transition metals stimulated by time are found for the first time from both electrical and luminescent measurements. A model that explains the changes in electrical and luminescent parameters by displacement of Ag ions into interstitial sites due to lattice deformation forces is proposed. Formation of an Ag;-donor impurity band in ZnSe samples doped with Ag and stored at room temperature is also studied. Thus, the properties of the doped samples are modified due to large lattice relaxation during aging. This fact should be taken into account in optoelectronic applications of doped ZnSe and related compounds.
Resumo:
Vaikka keraamisten laattojen valmistusprosessi onkin täysin automatisoitu, viimeinen vaihe eli laaduntarkistus ja luokittelu tehdään yleensä ihmisvoimin. Automaattinen laaduntarkastus laattojen valmistuksessa voidaan perustella taloudellisuus- ja turvallisuusnäkökohtien avulla. Tämän työn tarkoituksena on kuvata tutkimusprojektia keraamisten laattojen luokittelusta erilaisten väripiirteiden avulla. Oleellisena osana tutkittiin RGB- ja spektrikuvien välistä eroa. Työn teoreettinen osuus käy läpi aiemmin aiheesta tehdyn tutkimuksen sekä antaa taustatietoa konenäöstä, hahmontunnistuksesta, luokittelijoista sekä väriteoriasta. Käytännön osan aineistona oli 25 keraamista laattaa, jotka olivat viidestä eri luokasta. Luokittelussa käytettiin apuna k:n lähimmän naapurin (k-NN) luokittelijaa sekä itseorganisoituvaa karttaa (SOM). Saatuja tuloksia verrattiin myös ihmisten tekemään luokitteluun. Neuraalilaskenta huomattiin tärkeäksi työkaluksi spektrianalyysissä. SOM:n ja spektraalisten piirteiden avulla saadut tulokset olivat lupaavia ja ainoastaan kromatisoidut RGB-piirteet olivat luokittelussa parempia kuin nämä.
Resumo:
Luokittuminen erilaisine mekanismeineen aiheuttaa yleisesti ongelmia, kun on kysymyksessä kiintoaineen väliaikainenkin varastointi siilossa. Sitä voidaan vähentää kiintoaineiden, prosessin ja laitesuunnittelun muutoksilla. Tässä työssä tutkittiin mahdollisuuksia vähentää ilmeniitin luokittumista sen jauhatuspiirin ilmakiertoa optimoimalla. Suljetun kuivajauhatuspiirin keskeisimmäksi laitteeksi voitaisiin ajatella siinä oleva luokitin, joka voi olla esim. sykloni. Tässä piirissä tapahtuva kiintoaineen liikkuminen voidaan saada aikaiseksi esim. pneumaattisella kuljetuksella. Ilmeniitin jauhatus tapahtuu suljetussa kuivajauhatuspiirissä, jonka ajavana voimana on siinä oleva ilmakierto. Piirin oleellisia laitteita ovat kuulamylly, luokitin, erotussykloni ja pölykaappi sekä kiertoilma- ja poistoilmapuhaltimet. Ilmakierron optimointia varten suoritettiin kahden vastaavan jauhatuspiirin ainetasemääritykset. Lisäksi määritettiin yhden isomman piirin perustila. Jauhatuspiirien ainetasemäärityksissä määritettiin niiden massa- ja ilmavirrat sekä kiertokuorma ja luokittimen erotusterävyys, kuten myös ilmeniitin hiukkaskokojakaumat. Perustilamittauksissa määritettiin ainoastaan piirin ilmavirrat ja ilmeniitin hiukkaskokojakaumat. Optimointimittauksissa pienennettiin pikkumyllypiirin ilmamäärät vastaamaan kutakuinkin vastaavan toisen piirin määriä. Tällä yritettiin selvittää näiden toisiaan vastaavien piirien ilmamäärien ja varsinkin kiertokuormien eroavuutta. Tämä ilmamäärien pienentäminen ei tuottanut mainittavampaa muutosta piirin ainetaseisiin, joten voitaneen todeta, että piirin ilmamääriä pienentämällä saadaan aikaiseksi säästöjä, lähinnä kiertoilmapuhaltimen tehon alennuksen kautta.
Resumo:
Työn tavoitteena oli optimoida LWC-paperitehtaan kahden hiomolinjan rejektinkäsittelyt. Uusituilla rejektilinjoilla on käytössä keskisakeusrejektinjauhatus. Työn keskeinen osa oli teräkoeajot, teräsarjoja tutkittiin kuusi, kolme molemmilla linjoilla. Kahdessa ensimmäisessä teräkoeajossa oli molemmilla linjoilla samanlaiset jauhinterät. Teräkoeajojen tuloksista havaittiin yleisellä tasolla, että suurin osa mitatuista ominaisuuksista parani jauhatusastetta nostettaessa. Ainoastaan repäisylujuus heikkeni. Terävaihtoehdoista pystyttiin poimimaan molemmille linjoille sopiva terävaihtoehto. Rejektinlajittelun havaittiin parantavan edelleen massan laatuominaisuuksia, paitsi repäisylujuutta. Toisena osuutena vertailtiin keskisakeusjauhimen terävaihtoehtoa, jolla saavutettiin hyviä tuloksia, toisen paperitehtaan korkeassa sakeudessa jauhettuun rejektiin. Korkeasakeusjauhimen terää ei erityisesti valikoitu koeajoa varten. Tuloksista havaittiin, että keskisakeusjauhimella saadaan aikaan varsin hyvää LWC-paperiin käytettävää massaa. Keskisakeudessa jauhettu massa oli monilta ominaisuuksiltaan jopa parempaa kuin korkeasakeusjauhimen massa. Työn kolmannessa osuudessa ajettiin rejektilinjalla sakeuskoeajo. Sakeuskoeajosta havaittiin, että optiset ominaisuudet olivat parhaimmillaan jauhimen MC-sakeusalueen keskivaiheilla. Jauhatussakeuden noustessa kuidut jäivät jäykemmiksi ja karkeammiksi. Tikkupitoisuus oli sitä pienempi, mitä alhaisempaa jauhatussakeutta käytettiin. Sakeudella ei ollut selvää vaikutusta lujuusominaisuuksiin. Tulosten perusteella paras jauhatussakeus keskisakeusjauhimella oli sakeusalueen puoliväli. Työn viimeisenä osana selvitettiin miten kytkentämuutos, jossa rejektilinjan viimeisen lajittimen rejekti käännettiin palaamaan jälkilajittelun sijaan rejektilinjan kaariseulalle, vaikutti koko hiomon kapasiteettiin ja rejektilinjan massan laatuun. Koeajojen tuloksena havaittiin, että kytkentämuutolla pystyttiin nostamaan koko hiomon kapasiteettia ja rejektilinjan akseptin laatu parani.
Resumo:
Dirt counting and dirt particle characterisation of pulp samples is an important part of quality control in pulp and paper production. The need for an automatic image analysis system to consider dirt particle characterisation in various pulp samples is also very critical. However, existent image analysis systems utilise a single threshold to segment the dirt particles in different pulp samples. This limits their precision. Based on evidence, designing an automatic image analysis system that could overcome this deficiency is very useful. In this study, the developed Niblack thresholding method is proposed. The method defines the threshold based on the number of segmented particles. In addition, the Kittler thresholding is utilised. Both of these thresholding methods can determine the dirt count of the different pulp samples accurately as compared to visual inspection and the Digital Optical Measuring and Analysis System (DOMAS). In addition, the minimum resolution needed for acquiring a scanner image is defined. By considering the variation in dirt particle features, the curl shows acceptable difference to discriminate the bark and the fibre bundles in different pulp samples. Three classifiers, called k-Nearest Neighbour, Linear Discriminant Analysis and Multi-layer Perceptron are utilised to categorize the dirt particles. Linear Discriminant Analysis and Multi-layer Perceptron are the most accurate in classifying the segmented dirt particles by the Kittler thresholding with morphological processing. The result shows that the dirt particles are successfully categorized for bark and for fibre bundles.
Resumo:
The main focus of the present thesis was at verbal episodic memory processes that are particularly vulnerable to preclinical and clinical Alzheimer’s disease (AD). Here these processes were studied by a word learning paradigm, cutting across the domains of memory and language learning studies. Moreover, the differentiation between normal aging, mild cognitive impairment (MCI) and AD was studied by the cognitive screening test CERAD. In study I, the aim was to examine how patients with amnestic MCI differ from healthy controls in the different CERAD subtests. Also, the sensitivity and specificity of the CERAD screening test to MCI and AD was examined, as previous studies on the sensitivity and specificity of the CERAD have not included MCI patients. The results indicated that MCI is characterized by an encoding deficit, as shown by the overall worse performance on the CERAD Wordlist learning test compared with controls. As a screening test, CERAD was not very sensitive to MCI. In study II, verbal learning and forgetting in amnestic MCI, AD and healthy elderly controls was investigated with an experimental word learning paradigm, where names of 40 unfamiliar objects (mainly archaic tools) were trained with or without semantic support. The object names were trained during a 4-day long period and a follow-up was conducted one week, 4 weeks and 8 weeks after the training period. Manipulation of semantic support was included in the paradigm because it was hypothesized that semantic support might have some beneficial effects in the present learning task especially for the MCI group, as semantic memory is quite well preserved in MCI in contrast to episodic memory. We found that word learning was significantly impaired in MCI and AD patients, whereas forgetting patterns were similar across groups. Semantic support showed a beneficial effect on object name retrieval in the MCI group 8 weeks after training, indicating that the MCI patients’ preserved semantic memory abilities compensated for their impaired episodic memory. The MCI group performed equally well as the controls in the tasks tapping incidental learning and recognition memory, whereas the AD group showed impairment. Both the MCI and the AD group benefited less from phonological cueing than the controls. Our findings indicate that acquisition is compromised in both MCI and AD, whereas long13 term retention is not affected to the same extent. Incidental learning and recognition memory seem to be well preserved in MCI. In studies III and IV, the neural correlates of naming newly learned objects were examined in healthy elderly subjects and in amnestic MCI patients by means of positron emission tomography (PET) right after the training period. The naming of newly learned objects by healthy elderly subjects recruited a left-lateralized network, including frontotemporal regions and the cerebellum, which was more extensive than the one related to the naming of familiar objects (study III). Semantic support showed no effects on the PET results for the healthy subjects. The observed activation increases may reflect lexicalsemantic and lexical-phonological retrieval, as well as more general associative memory mechanisms. In study IV, compared to the controls, the MCI patients showed increased anterior cingulate activation when naming newly learned objects that had been learned without semantic support. This suggests a recruitment of additional executive and attentional resources in the MCI group.
Resumo:
In this study, feature selection in classification based problems is highlighted. The role of feature selection methods is to select important features by discarding redundant and irrelevant features in the data set, we investigated this case by using fuzzy entropy measures. We developed fuzzy entropy based feature selection method using Yu's similarity and test this using similarity classifier. As the similarity classifier we used Yu's similarity, we tested our similarity on the real world data set which is dermatological data set. By performing feature selection based on fuzzy entropy measures before classification on our data set the empirical results were very promising, the highest classification accuracy of 98.83% was achieved when testing our similarity measure to the data set. The achieved results were then compared with some other results previously obtained using different similarity classifiers, the obtained results show better accuracy than the one achieved before. The used methods helped to reduce the dimensionality of the used data set, to speed up the computation time of a learning algorithm and therefore have simplified the classification task
Resumo:
Memristive computing refers to the utilization of the memristor, the fourth fundamental passive circuit element, in computational tasks. The existence of the memristor was theoretically predicted in 1971 by Leon O. Chua, but experimentally validated only in 2008 by HP Labs. A memristor is essentially a nonvolatile nanoscale programmable resistor — indeed, memory resistor — whose resistance, or memristance to be precise, is changed by applying a voltage across, or current through, the device. Memristive computing is a new area of research, and many of its fundamental questions still remain open. For example, it is yet unclear which applications would benefit the most from the inherent nonlinear dynamics of memristors. In any case, these dynamics should be exploited to allow memristors to perform computation in a natural way instead of attempting to emulate existing technologies such as CMOS logic. Examples of such methods of computation presented in this thesis are memristive stateful logic operations, memristive multiplication based on the translinear principle, and the exploitation of nonlinear dynamics to construct chaotic memristive circuits. This thesis considers memristive computing at various levels of abstraction. The first part of the thesis analyses the physical properties and the current-voltage behaviour of a single device. The middle part presents memristor programming methods, and describes microcircuits for logic and analog operations. The final chapters discuss memristive computing in largescale applications. In particular, cellular neural networks, and associative memory architectures are proposed as applications that significantly benefit from memristive implementation. The work presents several new results on memristor modeling and programming, memristive logic, analog arithmetic operations on memristors, and applications of memristors. The main conclusion of this thesis is that memristive computing will be advantageous in large-scale, highly parallel mixed-mode processing architectures. This can be justified by the following two arguments. First, since processing can be performed directly within memristive memory architectures, the required circuitry, processing time, and possibly also power consumption can be reduced compared to a conventional CMOS implementation. Second, intrachip communication can be naturally implemented by a memristive crossbar structure.
Resumo:
Biomedical natural language processing (BioNLP) is a subfield of natural language processing, an area of computational linguistics concerned with developing programs that work with natural language: written texts and speech. Biomedical relation extraction concerns the detection of semantic relations such as protein-protein interactions (PPI) from scientific texts. The aim is to enhance information retrieval by detecting relations between concepts, not just individual concepts as with a keyword search. In recent years, events have been proposed as a more detailed alternative for simple pairwise PPI relations. Events provide a systematic, structural representation for annotating the content of natural language texts. Events are characterized by annotated trigger words, directed and typed arguments and the ability to nest other events. For example, the sentence “Protein A causes protein B to bind protein C” can be annotated with the nested event structure CAUSE(A, BIND(B, C)). Converted to such formal representations, the information of natural language texts can be used by computational applications. Biomedical event annotations were introduced by the BioInfer and GENIA corpora, and event extraction was popularized by the BioNLP'09 Shared Task on Event Extraction. In this thesis we present a method for automated event extraction, implemented as the Turku Event Extraction System (TEES). A unified graph format is defined for representing event annotations and the problem of extracting complex event structures is decomposed into a number of independent classification tasks. These classification tasks are solved using SVM and RLS classifiers, utilizing rich feature representations built from full dependency parsing. Building on earlier work on pairwise relation extraction and using a generalized graph representation, the resulting TEES system is capable of detecting binary relations as well as complex event structures. We show that this event extraction system has good performance, reaching the first place in the BioNLP'09 Shared Task on Event Extraction. Subsequently, TEES has achieved several first ranks in the BioNLP'11 and BioNLP'13 Shared Tasks, as well as shown competitive performance in the binary relation Drug-Drug Interaction Extraction 2011 and 2013 shared tasks. The Turku Event Extraction System is published as a freely available open-source project, documenting the research in detail as well as making the method available for practical applications. In particular, in this thesis we describe the application of the event extraction method to PubMed-scale text mining, showing how the developed approach not only shows good performance, but is generalizable and applicable to large-scale real-world text mining projects. Finally, we discuss related literature, summarize the contributions of the work and present some thoughts on future directions for biomedical event extraction. This thesis includes and builds on six original research publications. The first of these introduces the analysis of dependency parses that leads to development of TEES. The entries in the three BioNLP Shared Tasks, as well as in the DDIExtraction 2011 task are covered in four publications, and the sixth one demonstrates the application of the system to PubMed-scale text mining.
Resumo:
In this research, the effectiveness of Naive Bayes and Gaussian Mixture Models classifiers on segmenting exudates in retinal images is studied and the results are evaluated with metrics commonly used in medical imaging. Also, a color variation analysis of retinal images is carried out to find how effectively can retinal images be segmented using only the color information of the pixels.
Resumo:
Novel word learning has been rarely studied in people with aphasia (PWA), although it can provide a relatively pure measure of their learning potential, and thereby contribute to the development of effective aphasia treatment methods. The main aim of the present thesis was to explore the capacity of PWA for associative learning of word–referent pairings and cognitive-linguistic factors related to it. More specifically, the thesis examined learning and long-term maintenance of the learned pairings, the role of lexical-semantic abilities in learning as well as acquisition of phonological versus semantic information in associative novel word learning. Furthermore, the effect of modality on associative novel word learning and the neural underpinnings of successful learning were explored. The learning experiments utilized the Ancient Farming Equipment (AFE) paradigm that employs drawings of unfamiliar referents and their unfamiliar names. Case studies of Finnishand English-speaking people with chronic aphasia (n = 6) were conducted in the investigation. The learning results of PWA were compared to those of healthy control participants, and active production of the novel words and their semantic definitions was used as learning outcome measures. PWA learned novel word–novel referent pairings, but the variation between individuals was very wide, from more modest outcomes (Studies I–II) up to levels on a par with healthy individuals (Studies III–IV). In incidental learning of semantic definitions, none of the PWA reached the performance level of the healthy control participants. Some PWA maintained part of the learning outcomes up to months post-training, and one individual showed full maintenance of the novel words at six months post-training (Study IV). Intact lexical-semantic processing skills promoted learning in PWA (Studies I–II) but poor phonological short-term memory capacities did not rule out novel word learning. In two PWA with successful learning and long-term maintenance of novel word–novel referent pairings, learning relied on orthographic input while auditory input led to significantly inferior learning outcomes (Studies III–IV). In one of these individuals, this previously undetected modalityspecific learning ability was successfully translated into training with familiar but inaccessible everyday words (Study IV). Functional magnetic resonance imaging revealed that this individual had a disconnected dorsal speech processing pathway in the left hemisphere, but a right-hemispheric neural network mediated successful novel word learning via reading. Finally, the results of Study III suggested that the cognitive-linguistic profile may not always predict the optimal learning channel for an individual with aphasia. Small-scale learning probes seem therefore useful in revealing functional learning channels in post-stroke aphasia.
Resumo:
Illnesses related to the heart are one of the major reasons for death all over the world causing many people to lose their lives in last decades. The good news is that many of those sicknesses are preventable if they are spotted in early stages. On the other hand, the number of the doctors are much lower than the number of patients. This will makes the auto diagnosing of diseases even more and more essential for humans today. Furthermore, when it comes to the diagnosing methods and algorithms, the current state of the art is lacking a comprehensive study on the comparison between different diagnosis solutions. Not having a single valid diagnosing solution has increased the confusion among scholars and made it harder for them to take further steps. This master thesis will address the issue of reliable diagnosing algorithm. We investigate ECG signals and the relation between different diseases and the heart’s electrical activity. Also, we will discuss the necessary steps needed for auto diagnosing the heart diseases including the literatures discussing the topic. The main goal of this master thesis is to find a single reliable diagnosing algorithm and quest for the best classifier to date for heart related sicknesses. Five most suited and most well-known classifiers, such as KNN, CART, MLP, Adaboost and SVM, have been investigated. To have a fair comparison, the ex-periment condition is kept the same for all classification methods. The UCI repository arrhythmia dataset will be used and the data will not be preprocessed. The experiment results indicates that AdaBoost noticeably classifies different diseases with a considera-bly better accuracy.
Resumo:
Kandidaatintyö tehtiin osana PulpVision-tutkimusprojektia, jonka tarkoituksena on kehittää kuvapohjaisia laskenta- ja luokittelumetodeja sellun laaduntarkkailuun paperin valmistuksessa. Tämän tutkimusprojektin osana on aiemmin kehitetty metodi, jolla etsittiin kaarevia rakenteita kuvista, ja tätä metodia hyödynnettiin kuitujen etsintään kuvista. Tätä metodia käytettiin lähtökohtana kandidaatintyölle. Työn tarkoituksena oli tutkia, voidaanko erilaisista kuitukuvista laskettujen piirteiden avulla tunnistaa kuvassa olevien kuitujen laji. Näissä kuitukuvissa oli kuituja neljästä eri puulajista ja yhdestä kasvista. Nämä lajit olivat akasia, koivu, mänty, eukalyptus ja vehnä. Jokaisesta lajista valittiin 100 kuitukuvaa ja nämä kuvat jaettiin kahteen ryhmään, joista ensimmäistä käytettiin opetusryhmänä ja toista testausryhmänä. Opetusryhmän avulla jokaiselle kuitulajille laskettiin näitä kuvaavia piirteitä, joiden avulla pyrittiin tunnistamaan testausryhmän kuvissa olevat kuitulajit. Nämä kuvat oli tuottanut CEMIS-Oulu (Center for Measurement and Information Systems), joka on mittaustekniikkaan keskittynyt yksikkö Oulun yliopistossa. Yksittäiselle opetusryhmän kuitukuvalle laskettiin keskiarvot ja keskihajonnat kolmesta eri piirteestä, jotka olivat pituus, leveys ja kaarevuus. Lisäksi laskettiin, kuinka monta kuitua kuvasta löydettiin. Näiden piirteiden eri yhdistelmien avulla testattiin tunnistamisen tarkkuutta käyttämällä k:n lähimmän naapurin menetelmää ja Naiivi Bayes -luokitinta testausryhmän kuville. Testeistä saatiin lupaavia tuloksia muun muassa pituuden ja leveyden keskiarvoja käytettäessä saavutettiin jopa noin 98 %:n tarkkuus molemmilla algoritmeilla. Tunnistuksessa kuitujen keskimäärinen pituus vaikutti olevan kuitukuvia parhaiten kuvaava piirre. Käytettyjen algoritmien välillä ei ollut suurta vaihtelua tarkkuudessa. Testeissä saatujen tulosten perusteella voidaan todeta, että kuitukuvien tunnistaminen on mahdollista. Testien perusteella kuitukuvista tarvitsee laskea vain kaksi piirrettä, joilla kuidut voidaan tunnistaa tarkasti. Käytetyt lajittelualgoritmit olivat hyvin yksinkertaisia, mutta ne toimivat testeissä hyvin.