15 resultados para Animal environment
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Neste Oil has introduced plant oils and animal fats for the production of NExBTL renewable diesel, and these raw materials differ from the conventional mineral based oils. One subject of new raw materials study is thermal degradation, or in another name pyrolysis, of these organic oils and fats. The aim of this master’s thesis is to increase knowledge on thermal degradation of these new raw materials, and to identify possible gaseous harmful thermal degradation compounds. Another aim is to de-termine the health and environmental hazards of identified compounds. One objective is also to examine the formation possibilities of hazardous compounds in the produc-tion of NExBTL-diesel. Plant oils and animal fats consist mostly of triglycerides. Pyrolysis of triglycerides is a complex phenomenon, and many degradation products can be formed. Based on the literature studies, 13 hazardous degradation products were identified, one of which was acrolein. This compound is very toxic and dangerous to the environment. Own pyrolysis experiments were carried out with rapeseed and palm oils, and with a mix-ture of palm oil and animal fat. At least 12 hazardous compounds, including acrolein, were analysed from the gas phase. According to the experiments, the factors which influence on acrolein formation are the time of the experiment, the sphere (air/hydrogen) in which the experiment is carried out, and the characteristics of the used oil. The production of NExBTL-diesel is not based on pyrolysis. This is why thermal degradation is possible only when abnormal process conditions prevail.
Resumo:
Hormonstörande ämnen är syntetiska eller naturliga ämnen som stör organismers hormonsystem och bidrar till könsförvirring och sterilitet. Sådana ämnen kommer i ökande takt ut i vattenmiljön genom rester av läkemedel, bekämpningsmedel och industriprodukter. Eftersom det finns många likheter mellan hormonsystemen hos människan och övriga ryggradsdjur kan till exempel fiskar användas som modellsystem för att underöka detta problem. I tidigare undersökningar har man funnit hormonella störningar, bl.a. feminisering och maskulinisering hos fiskar som utsatts för avfallsvatten från kommunala reningsverk eller avfallsvatten från pappersindustrin. Målet med denna avhandling var att undersöka om renat avfallsvatten från kommunala reningsverk längs Finlands kust innehåller hormonstörande ämnen i sådana mängder att de kan försorsaka hormonstörande effekter på fisk. Målet i denna avhandling var också att utveckla cellulära testsystem baserade på fiskceller, eftersom behovet av tillförlitliga och kostnadseffektiva cellbaserade tester för att underlätta riskbedömningen av hormonstörande ämnen är mycket stort för tillfället. Som testsystem har storspiggen använts, som besitter flera användbara biomarkörer för att mäta hormonstörande ämnens påverkan. Resultaten tyder på att problemen med hormonstörande påverkan på fisk inte är lika utbredda i Finland som i många andra europeiska länder. Detta beror troligtvis på att finska reningsverk har effektiva reningstekniker som reducerar mängden hormonstörande ämnen, eller på att utspädningen av avloppen i recipienterna är större än i många andra länder. Dock kan problemen inte helt uteslutas eftersom vissa feminiserande (estrogena) effekter kunde observeras hos fisken i de undersökta recipienterna utanför kommunala reningsverk. I kontrollerade laboratorieförsök där storpsiggar exponerades för kommunalt avloppsvatten uppmättes även här effekter som tyder på förekomst av estrogener i avloppsvattnet. De cell-baserade testsystemen klarade av att förutspå hormonella effekter hos hel fisk och kan därför vara mycket användbara i fortsatta studier av hormonstörande ämnens verkningsmekanismer i preliminära toxicitetsbedömningar.
Resumo:
The Repair of segmental defects in load-bearing long bones is a challenging task because of the diversity of the load affecting the area; axial, bending, shearing and torsional forces all come together to test the stability/integrity of the bone. The natural biomechanical requirements for bone restorative materials include strength to withstand heavy loads, and adaptivity to conform into a biological environment without disturbing or damaging it. Fiber-reinforced composite (FRC) materials have shown promise, as metals and ceramics have been too rigid, and polymers alone are lacking in strength which is needed for restoration. The versatility of the fiber-reinforced composites also allows tailoring of the composite to meet the multitude of bone properties in the skeleton. The attachment and incorporation of a bone substitute to bone has been advanced by different surface modification methods. Most often this is achieved by the creation of surface texture, which allows bone growth, onto the substitute, creating a mechanical interlocking. Another method is to alter the chemical properties of the surface to create bonding with the bone – for example with a hydroxyapatite (HA) or a bioactive glass (BG) coating. A novel fiber-reinforced composite implant material with a porous surface was developed for bone substitution purposes in load-bearing applications. The material’s biomechanical properties were tailored with unidirectional fiber reinforcement to match the strength of cortical bone. To advance bone growth onto the material, an optimal surface porosity was created by a dissolution process, and an addition of bioactive glass to the material was explored. The effects of dissolution and orientation of the fiber reinforcement were also evaluated for bone-bonding purposes. The Biological response to the implant material was evaluated in a cell culture study to assure the safety of the materials combined. To test the material’s properties in a clinical setting, an animal model was used. A critical-size bone defect in a rabbit’s tibia was used to test the material in a load-bearing application, with short- and long-term follow-up, and a histological evaluation of the incorporation to the host bone. The biomechanical results of the study showed that the material is durable and the tailoring of the properties can be reproduced reliably. The Biological response - ex vivo - to the created surface structure favours the attachment and growth of bone cells, with the additional benefit of bioactive glass appearing on the surface. No toxic reactions to possible agents leaching from the material could be detected in the cell culture study when compared to a nontoxic control material. The mechanical interlocking was enhanced - as expected - with the porosity, whereas the reinforcing fibers protruding from the surface of the implant gave additional strength when tested in a bone-bonding model. Animal experiments verified that the material is capable of withstanding load-bearing conditions in prolonged use without breaking of the material or creating stress shielding effects to the host bone. A Histological examination verified the enhanced incorporation to host bone with an abundance of bone growth onto and over the material. This was achieved with minimal tissue reactions to a foreign body. An FRC implant with surface porosity displays potential in the field of reconstructive surgery, especially regarding large bone defects with high demands on strength and shape retention in load-bearing areas or flat bones such as facial / cranial bones. The benefits of modifying the strength of the material and adjusting the surface properties with fiber reinforcement and bone-bonding additives to meet the requirements of different bone qualities are still to be fully discovered.
Resumo:
The purpose of the study is: (1) to describe how nursing students' experienced their clinical learning environment and the supervision given by staff nurses working in hospital settings; and (2) to develop and test an evaluation scale of Clinical Learning Environment and Supervision (CLES). The study has been carried out in different phases. The pilot study (n=163) explored the association between the characteristics of a ward and its evaluation as a learning environment by students. The second version of research instrument (which was developed by the results of this pilot study) were tested by an expert panel (n=9 nurse teachers) and test-retest group formed by student nurses (n=38). After this evaluative phase, the CLES was formed as the basic research instrument for this study and it was tested with the Finnish main sample (n=416). In this phase, a concurrent validity instrument (Dunn & Burnett 1995) was used to confirm the validation process of CLES. The international comparative study was made by comparing the Finnish main sample with a British sample (n=142). The international comparative study was necessary for two reasons. In the instrument developing process, there is a need to test the new instrument in some other nursing culture. Other reason for comparative international study is the reflecting the impact of open employment markets in the European Union (EU) on the need to evaluate and to integrate EU health care educational systems. The results showed that the individualised supervision system is the most used supervision model and the supervisory relationship with personal mentor is the most meaningful single element of supervision evaluated by nursing students. The ward atmosphere and the management style of ward manager are the most important environmental factors of the clinical ward. The study integrates two theoretical elements - learning environment and supervision - in developing a preliminary theoretical model. The comparative international study showed that, Finnish students were more satisfied and evaluated their clinical placements and supervision with higher scores than students in the United Kingdom (UK). The difference between groups was statistical highly significant (p= 0.000). In the UK, clinical placements were longer but students met their nurse teachers less frequently than students in Finland. Arrangements for supervision were similar. This research process has produced the evaluation scale (CLES), which can be used in research and quality assessments of clinical learning environment and supervision in Finland and in the UK. CLES consists of 27 items and it is sub-divided into five sub-dimensions. Cronbach's alpha coefficient varied from high 0.94 to marginal 0.73. CLES is a compact evaluation scale and user-friendliness makes it suitable for continuing evaluation.
Resumo:
Jarmo Rintasalo, Pentti Tapio
Resumo:
Selostus: Kestävän kehityksen vaatimukset kotieläintuotannossa ja -jalostuksessa
Resumo:
Selostus: Kaseiinien yhdistelmägenotyyppien ja [beta]-laktoglobuliinin genotyyppien vaikutus maidon juoksettumisominaisuuksiin ja koostumukseen
Resumo:
Selostus: Kasvatushäkin ympäristön vaikutus hopeakettujen käyttäytymiseen
Resumo:
Selostus: Eläinmalliin perustuvien hiehojen odotusarvojen luotettavuus jalostusarvon ennusteena