70 resultados para Ancestral range estimation
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Gas-liquid mass transfer is an important issue in the design and operation of many chemical unit operations. Despite its importance, the evaluation of gas-liquid mass transfer is not straightforward due to the complex nature of the phenomena involved. In this thesis gas-liquid mass transfer was evaluated in three different gas-liquid reactors in a traditional way by measuring the volumetric mass transfer coefficient (kLa). The studied reactors were a bubble column with a T-junction two-phase nozzle for gas dispersion, an industrial scale bubble column reactor for the oxidation of tetrahydroanthrahydroquinone and a concurrent downflow structured bed.The main drawback of this approach is that the obtained correlations give only the average volumetric mass transfer coefficient, which is dependent on average conditions. Moreover, the obtained correlations are valid only for the studied geometry and for the chemical system used in the measurements. In principle, a more fundamental approach is to estimate the interfacial area available for mass transfer from bubble size distributions obtained by solution of population balance equations. This approach has been used in this thesis by developing a population balance model for a bubble column together with phenomenological models for bubble breakage and coalescence. The parameters of the bubble breakage rate and coalescence rate models were estimated by comparing the measured and calculated bubble sizes. The coalescence models always have at least one experimental parameter. This is because the bubble coalescence depends on liquid composition in a way which is difficult to evaluate using known physical properties. The coalescence properties of some model solutions were evaluated by measuring the time that a bubble rests at the free liquid-gas interface before coalescing (the so-calledpersistence time or rest time). The measured persistence times range from 10 msup to 15 s depending on the solution. The coalescence was never found to be instantaneous. The bubble oscillates up and down at the interface at least a coupleof times before coalescence takes place. The measured persistence times were compared to coalescence times obtained by parameter fitting using measured bubble size distributions in a bubble column and a bubble column population balance model. For short persistence times, the persistence and coalescence times are in good agreement. For longer persistence times, however, the persistence times are at least an order of magnitude longer than the corresponding coalescence times from parameter fitting. This discrepancy may be attributed to the uncertainties concerning the estimation of energy dissipation rates, collision rates and mechanisms and contact times of the bubbles.
Resumo:
In the current economy situation companies try to reduce their expenses. One of the solutions is to improve the energy efficiency of the processes. It is known that the energy consumption of pumping applications range from 20 up to 50% of the energy usage in the certain industrial plants operations. Some studies have shown that 30% to 50% of energy consumed by pump systems could be saved by changing the pump or the flow control method. The aim of this thesis is to create a mobile measurement system that can calculate a working point position of a pump drive. This information can be used to determine the efficiency of the pump drive operation and to develop a solution to bring pump’s efficiency to a maximum possible value. This can allow a great reduction in the pump drive’s life cycle cost. In the first part of the thesis, a brief introduction in the details of pump drive operation is given. Methods that can be used in the project are presented. Later, the review of available platforms for the project implementation is given. In the second part of the thesis, components of the project are presented. Detailed description for each created component is given. Finally, results of laboratory tests are presented. Acquired results are compared and analyzed. In addition, the operation of created system is analyzed and suggestions for the future development are given.
Resumo:
Machine learning provides tools for automated construction of predictive models in data intensive areas of engineering and science. The family of regularized kernel methods have in the recent years become one of the mainstream approaches to machine learning, due to a number of advantages the methods share. The approach provides theoretically well-founded solutions to the problems of under- and overfitting, allows learning from structured data, and has been empirically demonstrated to yield high predictive performance on a wide range of application domains. Historically, the problems of classification and regression have gained the majority of attention in the field. In this thesis we focus on another type of learning problem, that of learning to rank. In learning to rank, the aim is from a set of past observations to learn a ranking function that can order new objects according to how well they match some underlying criterion of goodness. As an important special case of the setting, we can recover the bipartite ranking problem, corresponding to maximizing the area under the ROC curve (AUC) in binary classification. Ranking applications appear in a large variety of settings, examples encountered in this thesis include document retrieval in web search, recommender systems, information extraction and automated parsing of natural language. We consider the pairwise approach to learning to rank, where ranking models are learned by minimizing the expected probability of ranking any two randomly drawn test examples incorrectly. The development of computationally efficient kernel methods, based on this approach, has in the past proven to be challenging. Moreover, it is not clear what techniques for estimating the predictive performance of learned models are the most reliable in the ranking setting, and how the techniques can be implemented efficiently. The contributions of this thesis are as follows. First, we develop RankRLS, a computationally efficient kernel method for learning to rank, that is based on minimizing a regularized pairwise least-squares loss. In addition to training methods, we introduce a variety of algorithms for tasks such as model selection, multi-output learning, and cross-validation, based on computational shortcuts from matrix algebra. Second, we improve the fastest known training method for the linear version of the RankSVM algorithm, which is one of the most well established methods for learning to rank. Third, we study the combination of the empirical kernel map and reduced set approximation, which allows the large-scale training of kernel machines using linear solvers, and propose computationally efficient solutions to cross-validation when using the approach. Next, we explore the problem of reliable cross-validation when using AUC as a performance criterion, through an extensive simulation study. We demonstrate that the proposed leave-pair-out cross-validation approach leads to more reliable performance estimation than commonly used alternative approaches. Finally, we present a case study on applying machine learning to information extraction from biomedical literature, which combines several of the approaches considered in the thesis. The thesis is divided into two parts. Part I provides the background for the research work and summarizes the most central results, Part II consists of the five original research articles that are the main contribution of this thesis.
Resumo:
This study investigates futures market efficiency and optimal hedge ratio estimation. First, cointegration between spot and futures prices is studied using Johansen method, with two different model specifications. If prices are found cointegrated, restrictions on cointegrating vector and adjustment coefficients are imposed, to account for unbiasedness, weak exogeneity and prediction hypothesis. Second, optimal hedge ratios are estimated using static OLS, and time-varying DVEC and CCC models. In-sample and out-of-sample results for one, two and five period ahead are reported. The futures used in thesis are RTS index, EUR/RUB exchange rate and Brent oil, traded in Futures and options on RTS.(FORTS) For in-sample period, data points were acquired from start of trading of each futures contract, RTS index from August 2005, EUR/RUB exchange rate March 2009 and Brent oil October 2008, lasting till end of May 2011. Out-of-sample period covers start of June 2011, till end of December 2011. Our results indicate that all three asset pairs, spot and futures, are cointegrated. We found RTS index futures to be unbiased predictor of spot price, mixed evidence for exchange rate, and for Brent oil futures unbiasedness was not supported. Weak exogeneity results for all pairs indicated spot price to lead in price discovery process. Prediction hypothesis, unbiasedness and weak exogeneity of futures, was rejected for all asset pairs. Variance reduction results varied between assets, in-sample in range of 40-85 percent and out-of sample in range of 40-96 percent. Differences between models were found small, except for Brent oil in which OLS clearly dominated. Out-of-sample results indicated exceptionally high variance reduction for RTS index, approximately 95 percent.
Resumo:
Parameter estimation still remains a challenge in many important applications. There is a need to develop methods that utilize achievements in modern computational systems with growing capabilities. Owing to this fact different kinds of Evolutionary Algorithms are becoming an especially perspective field of research. The main aim of this thesis is to explore theoretical aspects of a specific type of Evolutionary Algorithms class, the Differential Evolution (DE) method, and implement this algorithm as codes capable to solve a large range of problems. Matlab, a numerical computing environment provided by MathWorks inc., has been utilized for this purpose. Our implementation empirically demonstrates the benefits of a stochastic optimizers with respect to deterministic optimizers in case of stochastic and chaotic problems. Furthermore, the advanced features of Differential Evolution are discussed as well as taken into account in the Matlab realization. Test "toycase" examples are presented in order to show advantages and disadvantages caused by additional aspects involved in extensions of the basic algorithm. Another aim of this paper is to apply the DE approach to the parameter estimation problem of the system exhibiting chaotic behavior, where the well-known Lorenz system with specific set of parameter values is taken as an example. Finally, the DE approach for estimation of chaotic dynamics is compared to the Ensemble prediction and parameter estimation system (EPPES) approach which was recently proposed as a possible solution for similar problems.
Resumo:
Fluid handling systems such as pump and fan systems are found to have a significant potential for energy efficiency improvements. To deliver the energy saving potential, there is a need for easily implementable methods to monitor the system output. This is because information is needed to identify inefficient operation of the fluid handling system and to control the output of the pumping system according to process needs. Model-based pump or fan monitoring methods implemented in variable speed drives have proven to be able to give information on the system output without additional metering; however, the current model-based methods may not be usable or sufficiently accurate in the whole operation range of the fluid handling device. To apply model-based system monitoring in a wider selection of systems and to improve the accuracy of the monitoring, this paper proposes a new method for pump and fan output monitoring with variable-speed drives. The method uses a combination of already known operating point estimation methods. Laboratory measurements are used to verify the benefits and applicability of the improved estimation method, and the new method is compared with five previously introduced model-based estimation methods. According to the laboratory measurements, the new estimation method is the most accurate and reliable of the model-based estimation methods.
Resumo:
Selostus: Ayrshire-ensikoiden koelypsykohtaisen maidontuotannon perinnölliset tunnusluvut laktaation eri vaiheissa
Resumo:
Selostus: Maassa olevan nitraattitypen arviointi simulointimallin avulla
Resumo:
Abstract
Resumo:
Abstract
Resumo:
Abstract