4 resultados para Adenylyl Transferase

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structural studies of proteins aim at elucidating the atomic details of molecular interactions in biological processes of living organisms. These studies are particularly important in understanding structure, function and evolution of proteins and in defining their roles in complex biological settings. Furthermore, structural studies can be used for the development of novel properties in biomolecules of environmental, industrial and medical importance. X-ray crystallography is an invaluable tool to obtain accurate and precise information about the structure of proteins at the atomic level. Glutathione transferases (GSTs) are amongst the most versatile enzymes in nature. They are able to catalyze a wide variety of conjugation reactions between glutathione (GSH) and non-polar components containing an electrophilic carbon, nitrogen or sulphur atom. Plant GSTs from the Tau class (a poorly characterized class) play an important role in the detoxification of xenobiotics and stress tolerance. Structural studies were performed on a Tau class fluorodifen-inducible glutathione transferase from Glycine max (GmGSTU4-4) complexed with GSH (2.7 Å) and a product analogue Nb-GSH (1.7 Å). The three-dimensional structure of the GmGSTU4-4-GSH complex revealed that GSH binds in different conformations in the two subunits of the dimer: in an ionized form in one subunit and a non-ionized form in the second subunit. Only the ionized form of the substrate may lead to the formation of a catalytically competent complex. Structural comparison between the GSH and Nb-GSH bound complexes revealed significant differences with respect to the hydrogen-bonding, electrostatic interaction pattern, the upper part of -helix H4 and the C-terminus of the enzyme. These differences indicate an intrasubunit modulation between the G-and Hsites suggesting an induced-fit mechanism of xenobiotic substrate binding. A novel binding site on the surface of the enzyme was also revealed. Bacterial type-II L-asparaginases are used in the treatment of haematopoietic diseases such as acute lymphoblastic leukaemia (ALL) and lymphomas due to their ability to catalyze the conversion of L-asparagine to L-aspartate and ammonia. Escherichia coli and Erwinia chrysanthemi asparaginases are employed for the treatment of ALL for over 30 years. However, serious side-effects affecting the liver and pancreas have been observed due to the intrinsic glutaminase activity of the administered enzymes. Structural studies on Helicobacter pylori L-asparaginase (HpA) were carried out in an effort to discover novel L-asparaginases with potential chemotherapeutic utility in ALL treatment. Detailed analysis of the active site geometry revealed structurally significant differences between HpA and other Lasparaginases that may be important for the biological activities of the enzyme and could be further exploited in protein engineering efforts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cells of epithelial origin, e.g. from breast and prostate cancers, effectively differentiate into complex multicellular structures when cultured in three-dimensions (3D) instead of conventional two-dimensional (2D) adherent surfaces. The spectrum of different organotypic morphologies is highly dependent on the culture environment that can be either non-adherent or scaffold-based. When embedded in physiological extracellular matrices (ECMs), such as laminin-rich basement membrane extracts, normal epithelial cells differentiate into acinar spheroids reminiscent of glandular ductal structures. Transformed cancer cells, in contrast, typically fail to undergo acinar morphogenic patterns, forming poorly differentiated or invasive multicellular structures. The 3D cancer spheroids are widely accepted to better recapitulate various tumorigenic processes and drug responses. So far, however, 3D models have been employed predominantly in the Academia, whereas the pharmaceutical industry has yet to adopt a more widely and routine use. This is mainly due to poor characterisation of cell models, lack of standardised workflows and high throughput cell culture platforms, and the availability of proper readout and quantification tools. In this thesis, a complete workflow has been established entailing well-characterised 3D cell culture models for prostate cancer, a standardised 3D cell culture routine based on high-throughput-ready platform, automated image acquisition with concomitant morphometric image analysis, and data visualisation, in order to enable large-scale high-content screens. Our integrated suite of software and statistical analysis tools were optimised and validated using a comprehensive panel of prostate cancer cell lines and 3D models. The tools quantify multiple key cancer-relevant morphological features, ranging from cancer cell invasion through multicellular differentiation to growth, and detect dynamic changes both in morphology and function, such as cell death and apoptosis, in response to experimental perturbations including RNA interference and small molecule inhibitors. Our panel of cell lines included many non-transformed and most currently available classic prostate cancer cell lines, which were characterised for their morphogenetic properties in 3D laminin-rich ECM. The phenotypes and gene expression profiles were evaluated concerning their relevance for pre-clinical drug discovery, disease modelling and basic research. In addition, a spontaneous model for invasive transformation was discovered, displaying a highdegree of epithelial plasticity. This plasticity is mediated by an abundant bioactive serum lipid, lysophosphatidic acid (LPA), and its receptor LPAR1. The invasive transformation was caused by abrupt cytoskeletal rearrangement through impaired G protein alpha 12/13 and RhoA/ROCK, and mediated by upregulated adenylyl cyclase/cyclic AMP (cAMP)/protein kinase A, and Rac/ PAK pathways. The spontaneous invasion model tangibly exemplifies the biological relevance of organotypic cell culture models. Overall, this thesis work underlines the power of novel morphometric screening tools in drug discovery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The three alpha2-adrenoceptor (alpha2-AR) subtypes belong to the G protein-coupled receptor superfamily and represent potential drug targets. These receptors have many vital physiological functions, but their actions are complex and often oppose each other. Current research is therefore driven towards discovering drugs that selectively interact with a specific subtype. Cell model systems can be used to evaluate a chemical compound's activity in complex biological systems. The aim of this thesis was to optimize and validate cell-based model systems and assays to investigate alpha2-ARs as drug targets. The use of immortalized cell lines as model systems is firmly established but poses several problems, since the protein of interest is expressed in a foreign environment, and thus essential components of receptor regulation or signaling cascades might be missing. Careful cell model validation is thus required; this was exemplified by three different approaches. In cells heterologously expressing alpha2A-ARs, it was noted that the transfection technique affected the test outcome; false negative adenylyl cyclase test results were produced unless a cell population expressing receptors in a homogenous fashion was used. Recombinant alpha2C-ARs in non-neuronal cells were retained inside the cells, and not expressed in the cell membrane, complicating investigation of this receptor subtype. Receptor expression enhancing proteins (REEPs) were found to be neuronalspecific adapter proteins that regulate the processing of the alpha2C-AR, resulting in an increased level of total receptor expression. Current trends call for the use of primary cells endogenously expressing the receptor of interest; therefore, primary human vascular smooth muscle cells (SMC) expressing alpha2-ARs were tested in a functional assay monitoring contractility with a myosin light chain phosphorylation assay. However, these cells were not compatible with this assay due to the loss of differentiation. A rat aortic SMC cell line transfected to express the human alpha2B-AR was adapted for the assay, and it was found that the alpha2-AR agonist, dexmedetomidine, evoked myosin light chain phosphorylation in this model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific disorder characterized by maternal pruritus and elevated liver enzymes. It usually begins in the third trimester of pregnancy and resolves spontaneously after delivery. ICP is considered benign for the pregnant woman, but it is associated with an increased risk for unexplained term stillbirth and preterm delivery. There are no specific laboratory markers to diagnose ICP. The diagnosis is currently based on the presence of maternal pruritus and elevated values of alanine aminotransaminases (ALT) and serum bile acids (BA). Recently, ursodeoxycholic acid (UDCA) has been used for treatment. Mechanisms leading to intrauterine fetal death (IUFD) may be multifactorial and are unknown at present. For this thesis, 415 pregnant women with ICP were studied. The aim was to evaluate the value of the liver enzyme glutathione S-transferase alpha (GSTA) as a specific marker of ICP and to assess the effect of maternal UDCA therapy on maternal laboratory values and fetal outcome. The specific markers predisposing the fetus to heart arrhythmia were studied by comparing waveform analysis of fetal electrocardiograms (FECG) during labor in pregnancies complicated by ICP with controls. The levels of maternal GSTA were high and the values correlated with the value of ALT in patients with ICP. UDCA therapy reduced the values of the liver enzymes and alleviated maternal pruritus, but it did not influence maternal hormonal values. Although the newborns experienced an uneventful perinatal outcome, severe ICP was still associated with preterm birth and admission to the neonatal intensive care unit (NICU). There were no significant differences in intrapartum FECG findings between fetuses born to ICP women and controls.