7 resultados para 14Carbon uptake rate, attributed to calcification, fractionated
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Gas-liquid mass transfer is an important issue in the design and operation of many chemical unit operations. Despite its importance, the evaluation of gas-liquid mass transfer is not straightforward due to the complex nature of the phenomena involved. In this thesis gas-liquid mass transfer was evaluated in three different gas-liquid reactors in a traditional way by measuring the volumetric mass transfer coefficient (kLa). The studied reactors were a bubble column with a T-junction two-phase nozzle for gas dispersion, an industrial scale bubble column reactor for the oxidation of tetrahydroanthrahydroquinone and a concurrent downflow structured bed.The main drawback of this approach is that the obtained correlations give only the average volumetric mass transfer coefficient, which is dependent on average conditions. Moreover, the obtained correlations are valid only for the studied geometry and for the chemical system used in the measurements. In principle, a more fundamental approach is to estimate the interfacial area available for mass transfer from bubble size distributions obtained by solution of population balance equations. This approach has been used in this thesis by developing a population balance model for a bubble column together with phenomenological models for bubble breakage and coalescence. The parameters of the bubble breakage rate and coalescence rate models were estimated by comparing the measured and calculated bubble sizes. The coalescence models always have at least one experimental parameter. This is because the bubble coalescence depends on liquid composition in a way which is difficult to evaluate using known physical properties. The coalescence properties of some model solutions were evaluated by measuring the time that a bubble rests at the free liquid-gas interface before coalescing (the so-calledpersistence time or rest time). The measured persistence times range from 10 msup to 15 s depending on the solution. The coalescence was never found to be instantaneous. The bubble oscillates up and down at the interface at least a coupleof times before coalescence takes place. The measured persistence times were compared to coalescence times obtained by parameter fitting using measured bubble size distributions in a bubble column and a bubble column population balance model. For short persistence times, the persistence and coalescence times are in good agreement. For longer persistence times, however, the persistence times are at least an order of magnitude longer than the corresponding coalescence times from parameter fitting. This discrepancy may be attributed to the uncertainties concerning the estimation of energy dissipation rates, collision rates and mechanisms and contact times of the bubbles.
Resumo:
Dynamic behavior of bothisothermal and non-isothermal single-column chromatographic reactors with an ion-exchange resin as the stationary phase was investigated. The reactor performance was interpreted by using results obtained when studying the effect of the resin properties on the equilibrium and kinetic phenomena occurring simultaneously in the reactor. Mathematical models were derived for each phenomenon and combined to simulate the chromatographic reactor. The phenomena studied includes phase equilibria in multicomponent liquid mixture¿ion-exchange resin systems, chemicalequilibrium in the presence of a resin catalyst, diffusion of liquids in gel-type and macroporous resins, and chemical reaction kinetics. Above all, attention was paid to the swelling behavior of the resins and how it affects the kinetic phenomena. Several poly(styrene-co-divinylbenzene) resins with different cross-link densities and internal porosities were used. Esterification of acetic acid with ethanol to produce ethyl acetate and water was used as a model reaction system. Choosing an ion-exchange resin with a low cross-link density is beneficial inthe case of the present reaction system: the amount of ethyl acetate as well the ethyl acetate to water mole ratio in the effluent stream increase with decreasing cross-link density. The enhanced performance of the reactor is mainly attributed to increasing reaction rate, which in turn originates from the phase equilibrium behavior of the system. Also mass transfer considerations favor the use ofresins with low cross-link density. The diffusion coefficients of liquids in the gel-type ion-exchange resins were found to fall rapidly when the extent of swelling became low. Glass transition of the polymer was not found to significantlyretard the diffusion in sulfonated PS¿DVB ion-exchange resins. It was also shown that non-isothermal operation of a chromatographic reactor could be used to significantly enhance the reactor performance. In the case of the exothermic modelreaction system and a near-adiabatic column, a positive thermal wave (higher temperature than in the initial state) was found to travel together with the reactive front. This further increased the conversion of the reactants. Diffusion-induced volume changes of the ion-exchange resins were studied in a flow-through cell. It was shown that describing the swelling and shrinking kinetics of the particles calls for a mass transfer model that explicitly includes the limited expansibility of the polymer network. A good description of the process was obtained by combining the generalized Maxwell-Stefan approach and an activity model that was derived from the thermodynamics of polymer solutions and gels. The swelling pressure in the resin phase was evaluated by using a non-Gaussian expression forthe polymer chain length distribution. Dimensional changes of the resin particles necessitate the use of non-standard mathematical tools for dynamic simulations. A transformed coordinate system, where the mass of the polymer was used as a spatial variable, was applied when simulating the chromatographic reactor columns as well as the swelling and shrinking kinetics of the resin particles. Shrinking of the particles in a column leads to formation of dead volume on top of the resin bed. In ordinary Eulerian coordinates, this results in a moving discontinuity that in turn causes numerical difficulties in the solution of the PDE system. The motion of the discontinuity was eliminated by spanning two calculation grids in the column that overlapped at the top of the resin bed. The reactive and non-reactive phase equilibrium data were correlated with a model derived from thethermodynamics of polymer solution and gels. The thermodynamic approach used inthis work is best suited at high degrees of swelling because the polymer matrixmay be in the glassy state when the extent of swelling is low.
Resumo:
Cutting of thick section stainless steel and mild steel, and medium section aluminium using the high power ytterbium fibre laser has been experimentally investigated in this study. Theoretical models of the laser power requirement for cutting of a metal workpiece and the melt removal rate were also developed. The calculated laser power requirement was correlated to the laser power used for the cutting of 10 mm stainless steel workpiece and 15 mm mild steel workpiece using the ytterbium fibre laser and the CO2 laser. Nitrogen assist gas was used for cutting of stainless steel and oxygen was used for mild steel cutting. It was found that the incident laser power required for cutting at a given cutting speed was lower for fibre laser cutting than for CO2 laser cutting indicating a higher absorptivity of the fibre laser beam by the workpiece and higher melting efficiency for the fibre laser beam than for the CO2 laser beam. The difficulty in achieving an efficient melt removal during high speed cutting of the 15 mmmild steel workpiece with oxygen assist gas using the ytterbium fibre laser can be attributed to the high melting efficiency of the ytterbium fibre laser. The calculated melt flow velocity and melt film thickness correlated well with the location of the boundary layer separation point on the 10 mm stainless steel cut edges. An increase in the melt film thickness caused by deceleration of the melt particles in the boundary layer by the viscous shear forces results in the flow separation. The melt flow velocity increases with an increase in assist gas pressure and cut kerf width resulting in a reduction in the melt film thickness and the boundary layer separation point moves closer to the bottom cut edge. The cut edge quality was examined by visual inspection of the cut samples and measurement of the cut kerf width, boundary layer separation point, cut edge squareness (perpendicularity) deviation, and cut edge surface roughness as output quality factors. Different regions of cut edge quality in 10 mm stainless steel and 4 mm aluminium workpieces were defined for different combinations of cutting speed and laserpower.Optimization of processing parameters for a high cut edge quality in 10 mmstainless steel was demonstrated
Resumo:
This thesis examines the impact of foreign exchange rate volatility to the extent of use of foreign currency derivatives. Especially the focus is on the impacts of 2008 global financial crisis. The crisis increased risk level in the capital markets greatly. The change in the currency derivatives use is analyzed by comparing means between different periods and in addition, by linear regression that enables to analyze the explanatory power of the model. The research data consists of financial statements figures from fiscal years 2006-2011 published by firms operating in traditional Finnish industrial sectors. Volatilities of the chosen three currency pairs is calculated from the daily fixing rates of ECB. Based on the volatility the sample period is divided into three sub-periods. The results suggest that increased FX market volatility did not increase the use foreign currency derivatives. Furthermore, the increased foreign exchange rate volatility did not increase the power of linear regression model to estimate the use foreign currency derivatives compared to previous studies.
Resumo:
Background: Type 2 diabetes patients have a 2-4 fold risk of cardiovascular disease (CVD) compared to the general population. In type 2 diabetes, several CVD risk factors have been identified, including obesity, hypertension, hyperglycemia, proteinuria, sedentary lifestyle and dyslipidemia. Although much of the excess CVD risk can be attributed to these risk factors, a significant proportion is still unknown. Aims: To assess in middle-aged type 2 diabetic subjects the joint relations of several conventional and non-conventional CVD risk factors with respect to cardiovascular and total mortality. Subjects and methods: This thesis is part of a large prospective, population based East-West type 2 diabetes study that was launched in 1982-1984. It includes 1,059 middle-aged (45-64 years old) participants. At baseline, a thorough clinical examination and laboratory measurements were performed and an ECG was recorded. The latest follow-up study was performed 18 years later in January 2001 (when the subjects were 63-81 years old). The study endpoints were total mortality and mortality due to CVD, coronary heart disease (CHD) and stroke. Results: Physically more active patients had significantly reduced total, CVD and CHD mortality independent of high-sensitivity C-reactive protein (hs-CRP) levels unless proteinuria was present. Among physically active patients with a hs-CRP level >3 mg/L, the prognosis of CVD mortality was similar to patients with hs-CRP levels ≤3 mg/L. The worst prognosis was among physically inactive patients with hs-CRP levels >3 mg/L. Physically active patients with proteinuria had significantly increased total and CVD mortality by multivariate analyses. After adjustment for confounding factors, patients with proteinuria and a systolic BP <130 mmHg had a significant increase in total and CVD mortality compared to those with a systolic BP between 130 and 160 mmHg. The prognosis was similar in patients with a systolic BP <130 mmHg and ≥160 mmHg. Among patients without proteinuria, a systolic BP <130 mmHg was associated with a non-significant reduction in mortality. A P wave duration ≥114 ms was associated with a 2.5-fold increase in stroke mortality among patients with prevalent CHD or claudication. This finding persisted in multivariable analyses. Among patients with no comorbidities, there was no relationship between P wave duration and stroke mortality. Conclusions: Physical activity reduces total and CVD mortality in patients with type 2 diabetes without proteinuria or with elevated levels of hs-CRP, suggesting that the anti-inflammatory effect of physical activity can counteract increased CVD morbidity and mortality associated with a high CRP level. In patients with proteinuria the protective effect was not, however, present. Among patients with proteinuria, systolic BP <130 mmHg may increase mortality due to CVD. These results demonstrate the importance of early intervention to prevent CVD and to control all-cause mortality among patients with type 2 diabetes. The presence of proteinuria should be taken into account when defining the target systolic BP level for prevention of CVD deaths. A prolongation of the duration of the P wave was associated with increased stroke mortality among high-risk patients with type 2 diabetes. P wave duration is easy to measure and merits further examination to evaluate its importance for estimation of the risk of stroke among patients with type 2 diabetes.
Resumo:
The driving forces for current research of flame retardants are increased fire safety in combination with flame retardant formulations that fulfill the criteria of sustainable production and products. In recent years, important questions about the environmental safety of antimony, and in particular, brominated flame retardants have been raised. As a consequence of this, the current doctoral thesis work describes efforts to develop new halogen-free flame retardants that are based on various radical generators and phosphorous compounds. The investigation was first focused on compounds that are capable of generating alkyl radicals in order to study their role on flame retardancy of polypropylene. The family of azoalkanes was selected as the cleanest and most convenient source of free alkyl radicals. Therefore, a number of symmetrical and unsymmetrical azoalkanes of the general formula R-N=N-R’ were prepared. The experimental results show that in the series of different sized azocycloalkanes the flame retardant efficacy decreased in the following order: R = R´= cyclohexyl > cyclopentyl > cyclobutyl > cyclooctanyl > cyclododecanyl. However, in the series of aliphatic azoalkanes compounds, the efficacy decreased as followed: R = R´= n-alkyl > tert-butyl > tert-octyl. The most striking difference in flame retardant efficacy was observed in thick polypropylene plaques of 1 mm, e.g. azocyclohexane (AZO) had a much better flame retardant performance than did the commercial reference FR (Flamestab® NOR116) in thick PP sections. In addition, some of the prepared azoalkane flame retardants e.g. 4’4- bis(cyclohexylazocyclohexyl) methane (BISAZO) exhibited non-burning dripping behavior. Extrusion coating experiments of flame retarded low density polyethylene (LDPE) onto a standard machine finished Kraft paper were carried out in order to investigate the potential of azoalkanes in multilayer facings. The results show that azocyclohexane (AZO) and 4’4-bis (cyclohexylazocyclohexyl) methane (BISAZO) can significantly improve the flame retardant properties of low density polyethylene coated paper already at 0.5 wt.% loadings, provided that the maximum extrusion temperature of 260 oC is not exceeded and coating weight is kept low at 13 g/m2. In addition, various triazene-based flame retardants (RN1=N2-N3R’R’’) were prepared. For example, polypropylene samples containing a very low concentration of only 0.5 wt.% of bis- 4’4’-(3’3’-dimethyltriazene) diphenyl ether and other triazenes passed the DIN 4102-1 test with B2 classification. It is noteworthy that no burning dripping could be detected and the average burning times were very short with exceptionally low weight losses. Therefore, triazene compounds constitute a new and interesting family of radical generators for flame retarding of polymeric materials. The high flame retardant potential of triazenes can be attributed to their ability to generate various types of radicals during their thermal decomposition. According to thermogravimetric analysis/Fourier transform infrared spectroscopy/MS analysis, triazene units are homolytically cleaved into various aminyl, resonance-stabilized aryl radicals, and different CH fragments with simultaneous evolution of elemental nitrogen. Furthermore, the potential of thirteen aliphatic, aromatic, thiuram and heterocyclic substituted organic disulfide derivatives of the general formula R-S-S-R’ as a new group of halogen-free flame retardants for polypropylene films have been investigated. According to the DIN 4102- 1 standard ignitibility test, for the first time it has been demonstrated that many of the disulfides alone can effectively provide flame retardancy and self-extinguishing properties to polypropylene films at already very low concentrations of 0.5 wt.%. For the disulfide family, the highest FR activity was recorded for 5’5’-dithiobis (2-nitrobenzoic acid). Very low values for burning length (53 mm) and burning time (10 s) reflect significantly increased fire retardant performance of this disulfide compared to other compounds in this series as well as to Flamestab® NOR116. Finally, two new, phosphorus-based flame retardants were synthesized: P’P-diphenyl phosphinic hydrazide (PAH) and melamine phenyl phosphonate (MPhP). The DIN 4102-1 test and the more stringent UL94 vertical burning test (UL94 V) were used to assess the formulations ability to extinguish a flame once ignited. A very strong synergistic effect with azoalkanes was found, i.e. in combination with these radical generators even UL94 V0 rate could be obtained.
Resumo:
Lipid movement in cells occurs by a variety of methods. Lipids diffuse freely along the lateral plane of a membrane and can translocate between the lipid leaflets, either spontaneously or with the help of enzymes. Lipid translocation between the different cellular compartments predominantly takes place through vesicular transport. Specialized lipid transport proteins (LTPs) have also emerged as important players in lipid movement, as well as other cellular processes. In this thesis we have studied the glycolipid transport protein (GLTP), a protein that transports glycosphingolipids (GSLs). While the in vitro properties of GLTP have been well characterized, its cell biological role remains elusive. By altering GSL and GLTP levels in cells, we have extracted clues towards the protein's function. Based on the results presented in this thesis and in previous works, we hypothesize that GLTP is involved in the GSL homeostasis in cells. GLTP most likely functions as a transporter or sensor of newly synthesized glucosylceramide (GlcCer), at or near the site of GlcCer synthesis. GLTP also seems to be involved in the synthesis of globotriacylceramide, perhaps in a manner that is similar to that of the fourphosphate adaptor protein 2, another GlcCer-transporting LTP. Additionally, we have developed and studied a novel method of introducing ceramides to cells, using a solvent-free approach. Ceramides are important lipids that are implicated in several cellular functions. Their role as proapoptotic molecules is particularly evident. Ceramides form stable bilayer structures when complexed with cholesterol phosphocholine (CholPC), a large-headgroup sterol. By adding ceramide/CholPC complexes to the growth medium, various chain length ceramides were successfully delivered to cells in culture. The uptake rate was dependent on the chain length of the ceramide, where shorter lipids were internalized more quickly. The rate of uptake also determined how the cells metabolised the ceramides. Faster uptake favored conversion of ceramide to GlcCer, whereas slower delivery resulted mainly in breakdown of the lipid.