159 resultados para Wood fuels
Resumo:
Fossiiliset polttoainevarannot ovat ehtymässä. Nykyisen talouskasvumme perustuessa fossiilisten polttoaineiden kestämättömään käyttöön, on energiantuotantorakenteen muututtava. Euroopan Unioni on asettanut tavoitteet uusiutuvan energian osuuden lisäämiseksi. Näistä syistä johtuen kiinnostus uusiutuvaa energiaa ja hajautettua energiantuotantoa kohtaan on kasvanut viime aikoina. Tämän globaalin ilmiön rinnalla yhteiskuntarakenteen muutos Suomessa on johtanut tilanteeseen, jossa taloudellinen aktiviteetti kasvukeskusten ulkopuolella on hiipumassa. Loogisena ratkaisumallina on syntynyt hankkeita kuten Keski-Karjalan Kehitysyhtiö Oy:n Puhos 2013 - ympäristöalasta uutta liiketoimintaa - hanke. Tämä työ on Puhos 2013 - hankkeeseen tilattu tutkimus, jonka tavoitteena on puuta ja biokaasua polttoaineenaan käyttävän mikroturbiinitekniikkaan pohjautuvan pienen kokoluokan CHP tuotannon kannattavuuden selvittäminen kunnallisen lämpölaitoksen yhteydessä. Tutkimuksessa selvitettiin aluksi pienen kokoluokan CHP tuotannon kannattavuuteen vaikuttavat tekijät, jonka jälkeen opittua tietoa sovellettiin Kiteen Lämmön Arppentien lämpölaitoksen tapaukseen. Kiteen Lämmön taloudellisen kannattavuuden ohella tutkimuksessa huomioitiin uusien liiketoiminta mahdollisuuksien syntyminen alueelle. Käytetyt tutkimusmenetelmät olivat kvalitatiivinen analyysi ja perinteinen investoinnin kannattavuuslaskenta. Tutkimuksen tuloksena muodostettiin strategia, joka maksimoi molemmat edellä mainitut kannattavuuden näkökulmat. Kehitetyn strategian Kiteen Lämmön tulosta maksimoiva osuus muodostuu oman käyttösähkön tuottamisen aloittamisesta Arppentien lämpölaitoksella 30 kWe mikroturbiinilla käyttäen polttoaineena Bio10 Oy:n toimittamaa biokaasua. Uusien liiketoiminta mahdollisuuksien synty alueelle mahdollistetaan puolestaan kehittämällä puun kaasutukseen perustuva modulaarinen CHP laitos yhteistyössä Mekrijärven tutkimusaseman ja suomalaisten laitevalmistajien kanssa.
Resumo:
Knowledge of the behaviour of cellulose, hemicelluloses, and lignin during wood and pulp processing is essential for understanding and controlling the processes. Determination of monosaccharide composition gives information about the structural polysaccharide composition of wood material and helps when determining the quality of fibrous products. In addition, monitoring of the acidic degradation products gives information of the extent of degradation of lignin and polysaccharides. This work describes two capillary electrophoretic methods developed for the analysis of monosaccharides and for the determination of aliphatic carboxylic acids from alkaline oxidation solutions of lignin and wood. Capillary electrophoresis (CE), in its many variants is an alternative separation technique to chromatographic methods. In capillary zone electrophoresis (CZE) the fused silica capillary is filled with an electrolyte solution. An applied voltage generates a field across the capillary. The movement of the ions under electric field is based on the charge and hydrodynamic radius of ions. Carbohydrates contain hydroxyl groups that are ionised only in strongly alkaline conditions. After ionisation, the structures are suitable for electrophoretic analysis and identification through either indirect UV detection or electrochemical detection. The current work presents a new capillary zone electrophoretic method, relying on in-capillary reaction and direct UV detection at the wavelength of 270 nm. The method has been used for the simultaneous separation of neutral carbohydrates, including mono- and disaccharides and sugar alcohols. The in-capillary reaction produces negatively charged and UV-absorbing compounds. The optimised method was applied to real samples. The methodology is fast since no other sample preparation, except dilution, is required. A new method for aliphatic carboxylic acids in highly alkaline process liquids was developed. The goal was to develop a method for the simultaneous analysis of the dicarboxylic acids, hydroxy acids and volatile acids that are oxidation and degradation products of lignin and wood polysaccharides. The CZE method was applied to three process cases. First, the fate of lignin under alkaline oxidation conditions was monitored by determining the level of carboxylic acids from process solutions. In the second application, the degradation of spruce wood using alkaline and catalysed alkaline oxidation were compared by determining carboxylic acids from the process solutions. In addition, the effectiveness of membrane filtration and preparative liquid chromatography in the enrichment of hydroxy acids from black liquor was evaluated, by analysing the effluents with capillary electrophoresis.
Resumo:
The aim of the thesis was to find the effects of World Trade Organization and economic integration on the wood sourcing process from Russia to Finland and to the European Union. Also, the fo reign direct investments to Russian forest industry are studied within the WTO and Economic integration framework. Qualitative interviews were carried out as primary data (total of 5 interviews). Research studies and articles regarding the same subject were used as secondary data. Results show that companies may increase their volumes of imported timber from Russia due to the reduction of custom tariffs. Russian companies are becoming more productive, but there are still several problems with legislation, infrastructure, availability and harvesting profitability in some areas. These suggest that sourcing process may not be profitable in the future. The Russian forest industry sector will not gain significant foreign direct investments in the recent years because of the infrastructure and overall atmosphere of investments. Forest industry is not seen as profitable enough. The demand for cellulose and paper in Russia is not increasing fast enough and the cost inflation is cutting the profits made from producing in Russia.
Resumo:
The study investigates organisational learning and knowledge acquisition of wood-based prefabricated building manufacturers. This certain group of case companies was chosen, because their management and their employees generally have a strong manufacturing and engineering background, while the housing sector is characterised by national norms, regulations, as well as local building styles. Considering this setting, it was investigated, how the case companies develop organisational learning capabilities, acquire and transfer knowledge for their internationalisation. The theoretical framework of this study constitutes the knowledge-based conceptualisation of internationalisation, which combines the traditional internationalisation process, as well as the international new venture perspective based on their commonalities in the knowledge-based view of the firm. Different theories of internationalisation, including the network-perspective, were outlined and a framework on organisational learning and knowledge acquisition was established. The empirical research followed a qualitative approach, deploying a multiple-case study with five case companies from Austria, Finland and Germany. In the study, the development of the wood-based prefabricated building industry and of the case companies are described, and the motives, facilitators and challenges for foreign expansion, as well as the companies’ internationalisation approaches are compared. Different methods of how companies facilitate the knowledge-exchange or learn about new markets are also outlined. Experience, market knowledge and personal contacts are considered essential for the internationalisation process. The major finding of the study is that it is not necessary to acquire the market knowledge internally in a slow process as proposed by the Uppsala model. In four cases companies engaged knowledge in symbiotic relations with local business partners. Thereby, the building manufacturers contribute their design and production capabilities, and in return, their local partners provide them with knowledge about the market and local regulations; while they manage the sales and construction operations. Thus, the study provides strong evidence for the propositions of network perspective. One case company developed the knowledge internally in a gradual process: it entered the market sequentially with several business lines, showing an increasing level of complexity. In both of the observed strategies, single-loop and double-loop learning processes occurred.
Resumo:
This thesis is based on computational chemistry studies on lignans, focusing on the naturally occurring lignan hydroxymatairesinol (HMR) (Papers I II) and on TADDOL-like conidendrin-based chiral 1,4-diol ligands (LIGNOLs) (Papers III V). A complete quantum chemical conformational analysis on HMR was previously conducted by Dr. Antti Taskinen. In the works reported in this thesis, HMR was further studied by classical molecular dynamics (MD) simulations in aqueous solution including torsional angle analysis, quantum chemical solvation e ect study by the COnductorlike Screening MOdel (COSMO), and hydrogen bond analysis (Paper I), as well as from a catalytic point of view including protonation and deprotonation studies at di erent levels of theory (Paper II). The computational LIGNOL studies in this thesis constitute a multi-level deterministic structural optimization of the following molecules: 1,1-diphenyl (2Ph), two diastereomers of 1,1,4-triphenyl (3PhR, 3PhS), 1,1,4,4-tetraphenyl (4Ph) and 1,1,4,4-tetramethyl (4Met) 1,4-diol (Paper IV) and a conformational solvation study applying MD and COSMO (Paper V). Furthermore, a computational study on hemiketals in connection with problems in the experimental work by Docent Patrik Eklund's group synthesizing the LIGNOLs based on natural products starting from HMR, is shortly described (Paper III).
Resumo:
Computational fluid dynamics (CFD) modeling is an important tool in designing new combustion systems. By using CFD modeling, entire combustion systems can be modeled and the emissions and the performance can be predicted. CFD modeling can also be used to develop new and better combustion systems from an economical and environmental point of view. In CFD modeling of solid fuel combustion, the combustible fuel is generally treated as single fuel particles. One of the limitations with the CFD modeling concerns the sub-models describing the combustion of single fuel particles. Available models in the scientific literature are in many cases not suitable as submodels for CFD modeling since they depend on a large number of input parameters and are computationally heavy. In this thesis CFD-applicable models are developed for the combustion of single fuel particles. The single particle models can be used to improve the combustion performance in various combustion devices or develop completely new technologies. The investigated fields are oxidation of carbon (C) and nitrogen (N) in char residues from solid fuels. Modeled char-C oxidation rates are compared to experimental oxidation rates for a large number of pulverized solid fuel chars under relevant combustion conditions. The experiments have been performed in an isothermal plug flow reactor operating at 1123-1673 K and 3-15 vol.% O2. In the single particle model, the char oxidation is based on apparent kinetics and depends on three fuel specific parameters: apparent pre-exponential factor, apparent activation energy, and apparent reaction order. The single particle model can be incorporated as a sub-model into a CFD code. The results show that the modeled char oxidation rates are in good agreement with experimental char oxidation rates up to around 70% of burnout. Moreover, the results show that the activation energy and the reaction order can be assumed to be constant for a large number of bituminous coal chars under conditions limited by the combined effects of chemical kinetics and pore diffusion. Based on this, a new model based on only one fuel specific parameter is developed (Paper III). The results also show that reaction orders of bituminous coal chars and anthracite chars differ under similar conditions (Paper I and Paper II); reaction orders of bituminous coal chars were found to be one, while reaction orders of anthracite chars were determined to be zero. This difference in reaction orders has not previously been observed in the literature and should be considered in future char oxidation models. One of the most frequently used comprehensive char oxidation models could not explain the difference in the reaction orders. In the thesis (Paper II), a modification to the model is suggested in order to explain the difference in reaction orders between anthracite chars and bituminous coal chars. Two single particle models are also developed for the NO formation and reduction during the oxidation of single biomass char particles. In the models the char-N is assumed to be oxidized to NO and the NO is partly reduced inside the particle. The first model (Paper IV) is based on the concentration gradients of NO inside and outside the particle and the second model is simplified to such an extent that it is based on apparent kinetics and can be incorporated as a sub-model into a CFD code (Paper V). Modeled NO release rates from both models were in good agreement with experimental measurements from a single particle reactor of quartz glass operating at 1173-1323 K and 3-19 vol.% O2. In the future, the models can be used to reduce NO emissions in new combustion systems.
Resumo:
Lempäälään aiotaan rakentaa uusi kaukolämpölaitos, jossa polttoaineena käytettäisiin haketta. Nykyään Lempäälässä tuotetaan kaukolämpöä maakaasulla, jonka käyttämisestä halutaan siirtyä käyttämään lähialueilta saatavaa biopolttoainetta. Tässä työssä halutaan selvittää, mitä hyötyjä saataisiin hakkeen koneellisesta kuivauksesta. Työn toisena tavoitteena on suunnitella ja pohtia biopolttoaineterminaalin rakentamista sekä käsitellä hakkeen varastointia yleensä. Työssä tutustutaan hakkeeseen aiheesta kertovan kirjallisuuden avulla. Työssä on myös laskettu hakkeen kuivauksesta saatavia hyötyjä hakkeen lämpöarvoon sekä energiatiheyteen. Erityisesti perehdytään metsätähdehakkeeseen, rankahakkeeseen, kuorihakkeeseen sekä sahanpuruun. Laskelmien tuloksista on havaittu, että suurin hyöty hakkeen energiatiheyden parantumisessa saadaan kun hake kuivataan 35 % kosteuspitoisuuteen. Tämän jälkeen energiatiheyden paraneminen tapahtuu hitaammin. Hakkeen kuivauksesta saadaan myös muita hyötyjä kuin energiatiheyden paraneminen. Kuivan hakkeen käsittelyn ja varastoinnin on havaittu olevan vaivattomampaa kuin märän hakkeen. Biopolttoaineterminaalin ja voimalaitoksen tulisi sijaita rinnakkain, jotta hakkeen kuivauksesta saadaan mahdollisimman kustannustehokasta. Näin ollen syntyisi myös säästöjä hakkeen kuljetuksen suhteen. Biopolttoaineterminaalin rakentamista varten tarvittaisiin tilaa alustavien laskelmien perusteella noin yksi hehtaari. Työssä on myös laskettu biopolttoaineterminaalin rakentamisesta aiheutuvia kustannuksia sekä hakkeen kuljetuksesta koituvia logistiikka kustannuksia. Haketerminaalin ja voimalaitoksen sijaintia Lempäälässä on myös kartoitettu.
Resumo:
The major type of non-cellulosic polysaccharides (hemicelluloses) in softwoods, the partly acetylated galactoglucomannans (GGMs), which comprise about 15% of spruce wood, have attracted growing interest because of their potential to become high-value products with applications in many areas. The main objective of this work was to explore the possibilities to extract galactoglucomannans in native, polymeric form in high yield from spruce wood with pressurised hot-water, and to obtain a deeper understanding of the process chemistry involved. Spruce (Picea abies) chips and ground wood particles were extracted using an accelerated solvent extractor (ASE) in the temperature range 160 – 180°C. Detailed chemical analyses were done on both the water extracts and the wood residues. As much as 80 – 90% of the GGMs in spruce wood, i.e. about 13% based on the original wood, could be extracted from ground spruce wood with pure water at 170 – 180°C with an extraction time of 60 min. GGMs comprised about 75% of the extracted carbohydrates and about 60% of the total dissolved solids. Other substances in the water extracts were xylans, arabinogalactans, pectins, lignin and acetic acid. The yields from chips were only about 60% of that from ground wood. Both the GGMs and other non-cellulosic polysaccharides were extensively hydrolysed at severe extraction conditions when pH dropped to the level of 3.5. Addition of sodium bicarbonate increased the yields of polymeric GGMs at low additions, 2.5 – 5 mM, where the end pH remained around 3.9. However, at higher addition levels the yields decreased, mainly because the acetyl groups in GGMs were split off, leading to a low solubility of GGMs. Extraction with buffered water in the pH range 3.8 – 4.4 gave similar yields as with plain water, but gave a higher yield of polymeric GGMs. Moreover, at these pH levels the hydrolysis of acetyl groups in GGMs was significantly inhibited. It was concluded that hot-water extraction of polymeric GGMs in good yields (up to 8% of wood) demands appropriate control of pH, in a narrow range about 4. These results were supported by a study of hydrolysis of GGM at constant pH in the range of 3.8 – 4.2 where a kinetic model for degradation of GGM was developed. The influence of wood particle size on hot-water extraction was studied with particles in the range of 0.1 – 2 mm. The smallest particles (< 0.1 mm) gave 20 – 40% higher total yield than the coarsest particles (1.25 – 2 mm). The difference was greatest at short extraction times. The results indicated that extraction of GGMs and other polysaccharides is limited mainly by the mass transfer in the fibre wall, and for coarse wood particles also in the wood matrix. Spruce sapwood, heartwood and thermomechnical pulp were also compared, but only small differences in yields and composition of extracts were found. Two methods for isolation and purification of polymeric GGMs, i.e. membrane filtration and precipitation in ethanol-water, were compared. Filtration through a series of membranes with different pore sizes separated GGMs of different molar masses, from polymers to oligomers. Polysaccharides with molar mass higher than 4 kDa were precipitated in ethanol-water. GGMs comprised about 80% of the precipitated polysaccharides. Other polysaccharides were mainly arabinoglucuronoxylans and pectins. The ethanol-precipitated GGMs were by 13C NMR spectroscopy verified to be very similar to GGMs extracted from spruce wood in low yield at a much lower temperature, 90°C. The obtained large body of experimental data could be utilised for further kinetic and economic calculations to optimise technical hot-water extractionof softwoods.
Resumo:
Forest biomass represents a geographically distributed feedstock, and geographical location affects the greenhouse gas (GHG) performance of a given forest-bioenergy system in several ways. For example, biomass availability, forest operations, transportation possibilities and the distances involved, biomass end-use possibilities, fossil reference systems, and forest carbon balances all depend to some extent on location. The overall objective of this thesis was to assess the GHG emissions derived from supply and energy-utilization chains of forest biomass in Finland, with a specific focus on the effect of location in relation to forest biomass’s availability and the transportation possibilities. Biomass availability and transportation-network assessments were conducted through utilization of geographical information system methods, and the GHG emissions were assessed by means of lifecycle assessment. The thesis is based on four papers in which forest biomass supply on industrial scale was assessed. The feedstocks assessed in this thesis include harvesting residues, smalldiameter energy wood and stumps. The principal implication of the findings in this thesis is that in Finland, the location and availability of biomass in the proximity of a given energyutilization or energy-conversion plant is not a decisive factor in supply-chain GHG emissions or the possible GHG savings to be achieved with forest-biomass energy use. Therefore, for the greatest GHG reductions with limited forest-biomass resources, energy utilization of forest biomass in Finland should be directed to the locations where most GHG savings are achieved through replacement of fossil fuels. Furthermore, one should prioritize the types of forest biomass with the lowest direct supply-chain GHG emissions (e.g., from transport and comminution) and the lowest indirect ones (in particular, soil carbon-stock losses), regardless of location. In this respect, the best combination is to use harvesting residues in combined heat and power production, replacing peat or coal.
Resumo:
Wood contains only a very small amount of lipophilic extractives, commonly known as wood pitch. The pitch is known to cause severe problems in papermaking processes. The amount of pitch in process waters can be decreased by seasoning of the raw material prior to pulping, pulp washing, removal of pitch by flotation, adsorption of pitch onto various mineral surfaces, and retention of pitch to the fibre material by cationic polymers. The aim of this study was to determine the influence of pH on some of the methods used for pitch control. Experiments were performed using laboratory-made wood pitch emulsions with varying pH, salt concentration, hemicellulose concentration and pitch composition. These emulsions were used to study the phase distribution of resin and fatty acids, the colloidal stability of pitch with and without steric stabilisation by galactoglucomannans, and the interactions between wood pitch and mineral particles. Purification of unbleached and peroxidebleached mill process water was performed by froth flotation in combination with a foaming agent. The distribution of resin and fatty acids (RFAs) between colloidal pitch droplets and the water phase was very dependent on pH. At pH 3, almost all of the RFAs were attached to the pitch droplets, while increasing the pH led to increasing concentration of dissolved RFAs in the water phase. The presence of salt shifted the release of RFAs towards higher pH, while lower ratio of neutral pitch in the emulsion resulted in release of RFAs at lower pH. It was also seen that the dissolution and adsorption of RFAs at sudden pHchanges takes place very quickly. Colloidal pitch was more stable against electrolyte-induced aggregation at higher pH, due to its higher anionic charge. The concentration of cationic polymers needed to aggregate colloidal pitch also increased with increasing pH. The surface characteristics of solid particles, such as amount of charged groups, were very important for understanding their interactions with colloidal wood pitch. Water-soluble galactoglucomannans stabilised the colloidal pitch sterically against aggregation, but could not completely prevent interactions between wood pitch and hydrophilic particles. Froth flotation of unbleached and peroxidebleached process water showed that the pitch could be removed more effectively and selectively at low pH, compared to at neutral pH. The pitch was removed more effectively, using lower concentrations of foaming agent, from peroxide-bleached water than from unbleached water. The results show that pH has a major impact on various pulping and papermaking processes. It determines the anionic charge of the colloidal pitch and the solubility of certain pitch components. Because of this, the pH influences the effectiveness of pitch retention and removal of pitch. The results indicate that pitch problems could be diminished by acknowledging the importance of pH in various papermaking processes.
Resumo:
Waste combustion has gone from being a volume reducing discarding-method to an energy recovery process for unwanted material that cannot be reused or recycled. Different fractions of waste are used as fuel today, such as; municipal solid waste, refuse derived fuel, and solid recovered fuel. Furthermore, industrial waste, normally a mixture between commercial waste and building and demolition waste, is common, either as separate fuels or mixed with, for example, municipal solid waste. Compared to fossil or biomass fuels, waste mixtures are extremely heterogeneous, making it a complicated fuel. Differences in calorific values, ash content, moisture content, and changing levels of elements, such as Cl and alkali metals, are common in waste fuel. Moreover, waste contains much higher levels of troublesome trace elements, such as Zn, which is thought to accelerate a corrosion process. Varying fuel quality can be strenuous on the boiler system and may cause fouling and corrosion of heat exchanger surfaces. This thesis examines waste fuels and waste combustion from different angles, with the objective of giving a better understanding of waste as an important fuel in today’s fuel economy. Several chemical characterisation campaigns of waste fuels over longer time periods (10-12 months) was used to determine the fossil content of Swedish waste fuels, to investigate possible seasonal variations, and to study the presence of Zn in waste. Data from the characterisation campaigns were used for thermodynamic equilibrium calculations to follow trends and determine the effect of changing concentrations of various elements. The thesis also includes a study of the thermal behaviour of Zn and a full—scale study of how the bed temperature affects the volatilisation of alkali metals and Zn from the fuel. As mixed waste fuel contains considerable amounts of fresh biomass, such as wood, food waste, paper etc. it would be wrong to classify it as a fossil fuel. When Sweden introduced waste combustion as a part of the European Union emission trading system in the beginning of 2013 there was a need for combustion plants to find a usable and reliable method to determine the fossil content. Four different methods were studied in full-scale of seven combustion plants; 14Canalysis of solid waste, 14C-analysis of flue gas, sorting analysis followed by calculations, and a patented balance method that is using a software program to calculate the fossil content based on parameters from the plant. The study showed that approximately one third of the coal in Swedish waste mixtures has fossil origins and presented the plants with information about the four different methods and their advantages and disadvantages. Characterisation campaigns also showed that industrial waste contain higher levels of trace elements, such as Zn. The content of Zn in Swedish waste fuels was determined to be approximately 800 mg kg-1 on average, based on 42 samples of solid waste from seven different plants with varying mixtures between municipal solid waste and industrial waste. A review study of the occurrence of Zn in fuels confirmed that the highest amounts of Zn are present in waste fuels rather than in fossil or biomass fuels. In tires, Zn is used as a vulcanizing agent and can reach concentration values of 9600-16800 mg kg-1. Waste Electrical and Electronic Equipment is the second Zn-richest fuel and even though on average Zn content is around 4000 mg kg-1, the values of over 19000 mg kg-1 were also reported. The increased amounts of Zn, 3000-4000 mg kg-1, are also found in municipal solid waste, sludge with over 2000 mg kg-1 on average (some exceptions up to 49000 mg kg-1), and other waste derived fuels (over 1000 mg kg-1). Zn is also found in fossil fuels. In coal, the average level of Zn is 100 mg kg-1, the higher amount of Zn was only reported for oil shale with values between 20-2680 mg kg-1. The content of Zn in biomass is basically determined by its natural occurrence and it is typically 10-100 mg kg-1. The thermal behaviour of Zn is of importance to understand the possible reactions taking place in the boiler. By using thermal analysis three common Zn-compounds were studied (ZnCl2, ZnSO4, and ZnO) and compared to phase diagrams produced with thermodynamic equilibrium calculations. The results of the study suggest that ZnCl2(s/l) cannot exist readily in the boiler due to its volatility at high temperatures and its conversion to ZnO in oxidising conditions. Also, ZnSO4 decomposes around 680°C, while ZnO is relatively stable in the temperature range prevailing in the boiler. Furthermore, by exposing ZnO to HCl in a hot environment (240-330°C) it was shown that chlorination of ZnO with HCl gas is possible. Waste fuel containing high levels of elements known to be corrosive, for example, Na and K in combination with Cl, and also significant amounts of trace elements, such as Zn, are demanding on the whole boiler system. A full-scale study of how the volatilisation of Na, K, and Zn is affected by the bed temperature in a fluidised bed boiler was performed parallel with a lab-scale study with the same conditions. The study showed that the fouling rate on deposit probes were decreased by 20 % when the bed temperature was decreased from 870°C to below 720°C. In addition, the lab-scale experiments clearly indicated that the amount of alkali metals and Zn volatilised depends on the reactor temperature.
Resumo:
The main aim of this thesis is to study the effect of mineral fillers on the properties of extruded wood-polypropylene composites (WPC). The studied minerals are Talc, Calcite (CaCO3), two quantities of Wollastonite and Soapstone, and the level of mineral addition is 20 w-%. The study shows that mineral fillers can be used to modify and improve the properties of woodplastic composites. Especially the moisture-related properties of WPCs were found to be improved significantly by mineral addition. As the WPCs of the studied type are commonly used in outdoor applications, this is of importance in terms of usability. In machining, the addition of two minerals retained the surface roughness at same level throughout the test, indicating a favorable effect on machinability. The use of hard minerals shortened the tool life in machining. In general, a modest increase in density was observed. In many of the studied properties, no apparent influence of mineral addition was found, indicating that the properties were not weakened. An overall result was that talc showed the best overall performance, indicating that it can be used as an active filler improving most of the studied properties, especially moisture resistance. Calcite was found to have nearly similar performance. According to the findings, mineral addition to wood-plastic composites appears to be beneficial; especially moisture resistance can be enhanced without diminishing the other properties or usability in general.
Resumo:
More discussion is required on how and which types of biomass should be used to achieve a significant reduction in the carbon load released into the atmosphere in the short term. The energy sector is one of the largest greenhouse gas (GHG) emitters and thus its role in climate change mitigation is important. Replacing fossil fuels with biomass has been a simple way to reduce carbon emissions because the carbon bonded to biomass is considered as carbon neutral. With this in mind, this thesis has the following objectives: (1) to study the significance of the different GHG emission sources related to energy production from peat and biomass, (2) to explore opportunities to develop more climate friendly biomass energy options and (3) to discuss the importance of biogenic emissions of biomass systems. The discussion on biogenic carbon and other GHG emissions comprises four case studies of which two consider peat utilization, one forest biomass and one cultivated biomasses. Various different biomass types (peat, pine logs and forest residues, palm oil, rapeseed oil and jatropha oil) are used as examples to demonstrate the importance of biogenic carbon to life cycle GHG emissions. The biogenic carbon emissions of biomass are defined as the difference in the carbon stock between the utilization and the non-utilization scenarios of biomass. Forestry-drained peatlands were studied by using the high emission values of the peatland types in question to discuss the emission reduction potential of the peatlands. The results are presented in terms of global warming potential (GWP) values. Based on the results, the climate impact of the peat production can be reduced by selecting high-emission-level peatlands for peat production. The comparison of the two different types of forest biomass in integrated ethanol production in pulp mill shows that the type of forest biomass impacts the biogenic carbon emissions of biofuel production. The assessment of cultivated biomasses demonstrates that several selections made in the production chain significantly affect the GHG emissions of biofuels. The emissions caused by biofuel can exceed the emissions from fossil-based fuels in the short term if biomass is in part consumed in the process itself and does not end up in the final product. Including biogenic carbon and other land use carbon emissions into the carbon footprint calculations of biofuel reveals the importance of the time frame and of the efficiency of biomass carbon content utilization. As regards the climate impact of biomass energy use, the net impact on carbon stocks (in organic matter of soils and biomass), compared to the impact of the replaced energy source, is the key issue. Promoting renewable biomass regardless of biogenic GHG emissions can increase GHG emissions in the short term and also possibly in the long term.
Resumo:
Inorganic-organic sol-gel hybrid coatings can be used for improving and modifying properties of wood-based materials. By selecting a proper precursor, wood can be made water repellent, decay-, moisture- or UV-resistant. However, to control the barrier properties of sol-gel coatings on wood substrates against moisture uptake and weathering, an understanding of the surface morphology and chemistry of the deposited sol-gel coatings on wood substrates is needed. Mechanical pulp is used in production of wood-containing printing papers. The physical and chemical fiber surface characteristics, as created in the chosen mechanical pulp manufacturing process, play a key role in controlling the properties of the end-use product. A detailed understanding of how process parameters influence fiber surfaces can help improving cost-effectiveness of pulp and paper production. The current work focuses on physico-chemical characterization of modified wood-based materials with surface sensitive analytical tools. The overall objectives were, through advanced microscopy and chemical analysis techniques, (i) to collect versatile information about the surface structures of Norway spruce thermomechanical pulp fiber walls and understand how they are influenced by the selected chemical treatments, and (ii) to clarify the effect of various sol-gel coatings on surface structural and chemical properties of wood-based substrates. A special emphasis was on understanding the effect of sol-gel coatings on the water repellency of modified wood and paper surfaces. In the first part of the work, effects of chemical treatment on micro- and nano-scale surface structure of 1st stage TMP latewood fibers from Norway spruce were investigated. The chemicals applied were buffered sodium oxalate and hydrochloric acid. The outer and the inner fiber wall layers of the untreated and chemically treated fibers were separately analyzed by light microscopy, atomic force microscopy and field-emission scanning electron microscopy. The selected characterization methods enabled the demonstration of the effect of different treatments on the fiber surface structure, both visually and quantitatively. The outer fiber wall areas appeared as intact bands surrounding the fiber and they were clearly rougher than areas of exposed inner fiber wall. The roughness of the outer fiber wall areas increased most in the sodium oxalate treatment. The results indicated formation of more surface pores on the exposed inner fiber wall areas than on the corresponding outer fiber wall areas as a result of the chemical treatments. The hydrochloric acid treatment seemed to increase the surface porosity of the inner wall areas. In the second part of the work, three silane-based sol-gel hybrid coatings were selected in order to improve moisture resistance of wood and paper substrates. The coatings differed from each other in terms of having different alkyl (CH3–, CH3-(CH2)7–) and fluorocarbon (CF3–) chains attached to the trialkoxysilane sol-gel precursor. The sol-gel coatings were deposited by a wet coating method, i.e. spraying or spreading by brush. The effect of solgel coatings on surface structural and chemical properties of wood-based substrates was studied by using advanced surface analyzing tools: atomic force microscopy, X-ray photoelectron spectroscopy and time-of-flight secondary ion spectroscopy. The results show that the applied sol-gel coatings, deposited as thin films or particulate coatings, have different effects on surface characteristics of wood and wood-based materials. The coating which has a long hydrocarbon chain (CH3-(CH2)7–) attached to the silane backbone (octyltriethoxysilane) produced the highest hydrophobicity for wood and wood-based materials.