379 resultados para agency of technology
Resumo:
Scientific studies regarding specifically references do not seem to exist. However, the utilization of references is an important practice for many companies involved in industrial marketing. The purpose of the study is to increase the understanding about the utilization of references in international industrial marketing in order to contribute to the development of a theory of reference behavior. Specifically, the modes of reference usage in industry, the factors affecting a supplier's reference behavior, and the question how references are actually utilized, are explored in the study. Due to the explorative nature of the study, a research design was followed where theory and empirical studies alternated. An Exploratory Framework was developed to guide a pilot case study that resulted in Framework 1. Results of the pilot study guided an expanded literature review that was used to develop first a Structural Framework and a Process Framework which were combined in Framework 2. Then, the second empirical phase of the case study was conducted in the same (pilot) case company. In this phase, Decision Systems Analysis (DSA) was used as the analysis method. The DSA procedure consists of three interviewing waves: initial interviews, reinterviews, and validating interviews. Four reference decision processes were identified, described and analyzed in the form of flowchart descriptions. The flowchart descriptions were used to explore new constructs and to develop new propositions to develop Framework 2 further. The quality of the study was ascertained by many actions in both empirical parts of the study. The construct validity of the study was ascertained by using multiple sources of evidence and by asking the key informant to review the pilot case report. The DSA method itself includes procedures assuring validity. Because of the choice to conduct a single case study, external validity was not even pursued. High reliability was pursued through detailed documentation and thorough reporting of evidence. It was concluded that the core of the concept of reference is a customer relationship regardless of the concrete forms a reference might take in its utilization. Depending on various contingencies, references might have various tasks inside the four roles of increasing 1) efficiency of sales and sales management, 2) efficiency of the business, 3) effectiveness of marketing activities, and 4) effectiveness in establishing, maintaining and enhancing customer relationships. Thus, references have not only external but internal tasks as well. A supplier's reference behavior might be affected by many hierarchical conditions. Additionally, the empirical study showed that the supplier can utilize its references as a continuous, all pervasive decision making process through various practices. The process includes both individual and unstructured decision making subprocesses. The proposed concept of reference can be used to guide a reference policy recommendable for companies for which the utilization of references is important. The significance of the study is threefold: proposing the concept of reference, developing a framework of a supplier's reference behavior and its short term process of utilizing references, and conceptual structuring of an unstructured and in industrial marketing important phenomenon to four roles.
Resumo:
Fine powders of minerals are used commonly in the paper and paint industry, and for ceramics. Research for utilizing of different waste materials in these applications is environmentally important. In this work, the ultrafine grinding of two waste gypsum materials, namely FGD (Flue Gas Desulphurisation) gypsum and phosphogypsum from a phosphoric acid plant, with the attrition bead mill and with the jet mill has been studied. The ' objective of this research was to test the suitability of the attrition bead mill and of the jet mill to produce gypsum powders with a particle size of a few microns. The grinding conditions were optimised by studying the influences of different operational grinding parameters on the grinding rate and on the energy consumption of the process in order to achieve a product fineness such as that required in the paper industry with as low energy consumption as possible. Based on experimental results, the most influential parameters in the attrition grinding were found to be the bead size, the stirrer type, and the stirring speed. The best conditions, based on the product fineness and specific energy consumption of grinding, for the attrition grinding process is to grind the material with small grinding beads and a high rotational speed of the stirrer. Also, by using some suitable grinding additive, a finer product is achieved with a lower energy consumption. In jet mill grinding the most influential parameters were the feed rate, the volumetric flow rate of the grinding air, and the height of the internal classification tube. The optimised condition for the jet is to grind with a small feed rate and with a large rate of volumetric flow rate of grinding air when the inside tube is low. The finer product with a larger rate of production was achieved with the attrition bead mill than with the jet mill, thus the attrition grinding is better for the ultrafine grinding of gypsum than the jet grinding. Finally the suitability of the population balance model for simulation of grinding processes has been studied with different S , B , and C functions. A new S function for the modelling of an attrition mill and a new C function for the modelling of a jet mill were developed. The suitability of the selected models with the developed grinding functions was tested by curve fitting the particle size distributions of the grinding products and then comparing the fitted size distributions to the measured particle sizes. According to the simulation results, the models are suitable for the estimation and simulation of the studied grinding processes.
Resumo:
The possibility and the usefulness of applying plasma keyhole welding to structural steels with different compositions and material thicknesses, and in various welding positions has been examinated. Single pass butt welding with I groove in flat, horizontal vertical and vertical positions and root welding with V , Y and U grooves of thick plate material in flat position have been studied and the welds with high quality has been obtained. The technological conditions for successful welding are presented. The single and interactive effects of welding parameters on weld quality, especially on surface weld defects, geometrical form errors, internal defects and mechanical properties (strength, ductility, impact toughness, hardness and bendability) of weld joint, are presented. Welding parameter combinations providing the best quality welds are also presented.
Resumo:
This thesis includes several thermal hydraulic analyses related to the Loviisa WER 440 nuclear power plant units. The work consists of experimental studies, analysis of the experiments, analysis of some plant transits and development of a calculational model for calculation of boric acid concentrations in the reactor. In the first part of the thesis, in the case of won of boric acid solution behaviour during long term cooling period of LOCAs, experiments were performed in scaled down test facilities. The experimental data together with the results of RELAPS/MOD3 simulations were used to develop a model for calculations of boric acid concentrations in the reactor during LOCAs. The results of calculations showed that margins to critical concentrations that would lead to boric acid crystallization were large, both in the reactor core and in the lower plenum. This was mainly caused by the fact that water in the primary cooling circuit includes borax (Na)BsO,.IOHZO), which enters the reactor when ECC water is taken from the sump and greatly increases boric acid solubility in water. In the second part, in the case of simulation of horizontal steam generators, experiments were performed with PACTEL integral test loop to simulate loss of feedwater transients. The PACTEL experiments, as well as earlier REWET III natural circulation tests, were analyzed with RELAPS/MOD3 Version Sm5 code. The analysis showed that the code was capable of simulating the main events during the experiments. However, in the case of loss of secondary side feedwater the code was not completely capable to simulate steam superheating in the secondary side of the steam generators. The third part of the work consists of simulations of Loviisa VVER reactor pump trip transients with RELAPSlMODI Eur, RELAPS/MOD3 and CATHARE codes. All three codes were capable to simulate the two selected pump trip transients and no significant differences were found between the results of different codes. Comparison of the calculated results with the data measured in the Loviisa plant also showed good agreement.
Resumo:
Nanofiltration performance was studied with effluents from the pulp and paper industry and with model substances. The effect of filtration conditions and membrane properties on nanofiltration flux, retention, and fouling was investigated. Generally, the aim was to determine the parameters that influence nanofiltration efficiency and study how to carry out nanofiltration without fouling by controlling these parameters. The retentions of the nanofiltration membranes studied were considerably higher than those of tight ultrafiltration membranes, and the permeate fluxes obtained were approximately the same as those of tight ultrafiltration membranes. Generally, about 80% retentions of total carbon and conductivity were obtained during the nanofiltration experiments. Depending on the membrane and the filtration conditions, the retentions of monovalent ions (chloride) were between 80 and 95% in the nanofiltrations. An increase in pH improved retentions considerably and also the flux to some degree. An increase in pressure improved retention, whereas an increase in temperature decreased retention if the membrane retained the solute by the solution diffusion mechanism. In this study, more open membranes fouled more than tighter membranes due to higher concentration polarization and plugging of the membrane material. More irreversible fouling was measured for hydrophobic membranes. Electrostatic repulsion between the membrane and the components in the solution reduced fouling but did not completely prevent it with the hydrophobic membranes. Nanofiltration could be carried out without fouling, at least with the laboratory scale apparatus used here when the flux was below the critical flux. Model substances had a strong form of the critical flux, but the effluents had only a weak form of the critical flux. With the effluents, some fouling always occurred immediately when the filtration was started. However, if the flux was below the critical flux, further fouling was not observed. The flow velocity and pH were probably the most important parameters, along with the membrane properties, that influenced the critical flux. Precleaning of the membranes had only a small effect on the critical flux and retentions, but it improved the permeability of the membranes significantly.
The effects of real time control of welding parameters on weld quality in plasma arc keyhole welding
Resumo:
Joints intended for welding frequently show variations in geometry and position, for which it is unfortunately not possible to apply a single set of operating parameters to ensure constant quality. The cause of this difficulty lies in a number of factors, including inaccurate joint preparation and joint fit up, tack welds, as well as thermal distortion of the workpiece. In plasma arc keyhole welding of butt joints, deviations in the gap width may cause weld defects such as an incomplete weld bead, excessive penetration and burn through. Manual adjustment of welding parameters to compensate for variations in the gap width is very difficult, and unsatisfactory weld quality is often obtained. In this study a control system for plasma arc keyhole welding has been developed and used to study the effects of the real time control of welding parameters on gap tolerance during welding of austenitic stainless steel AISI 304L. The welding tests demonstrated the beneficial effect of real time control on weld quality. Compared with welding using constant parameters, the maximum tolerable gap width with an acceptable weld quality was 47% higher when using the real time controlled parameters for a plate thickness of 5 mm. In addition, burn through occurred with significantly larger gap widths when parameters were controlled in real time. Increased gap tolerance enables joints to be prepared and fit up less accurately, saving time and preparation costs for welding. In addition to the control system, a novel technique for back face monitoring is described in this study. The test results showed that the technique could be successfully applied for penetration monitoring when welding non magnetic materials. The results also imply that it is possible to measure the dimensions of the plasma efflux or weld root, and use this information in a feedback control system and, thus, maintain the required weld quality.
Resumo:
The amphiphilic nature of metal extractants causes the formation of micelles and other microscopic aggregates when in contact with water and an organic diluent. These phenomena and their effects on metal extraction were studied using carboxylic acid (Versatic 10) and organophosphorus acid (Cyanex 272) based extractants. Special emphasis was laid on the study of phase behaviour in a pre neutralisation stage when the extractant is transformed to a sodium or ammonium salt form. The pre neutralised extractants were used to extract nickel and to separate cobalt and nickel. Phase diagrams corresponding to the pre neutralisation stage in a metal extraction process were determined. The maximal solubilisation of the components in the system water(NH3)/extractant/isooctane takes place when the molar ratio between the ammonia salt form and the free form of the extractant is 0.5 for the carboxylic acid and 1 for the organophosphorus acid extractant. These values correspond to the complex stoichiometry of NH4A•HA and NIi4A, respectively. When such a solution is contacted with water a microemulsion is formed. If the aqueous phase contains also metal ions (e.g. Ni²+), complexation will take place on the microscopic interface of the micellar aggregates. Experimental evidence showing that the initial stage of nickel extraction with pre neutralised Versatic 10 is a fast pseudohomogeneous reaction was obtained. About 90% of the metal were extracted in the first 15 s after the initial contact. For nickel extraction with pre neutralised Versatic 10 it was found that the highest metal loading and the lowest residual ammonia and water contents in the organic phase are achieved when the feeds are balanced so that the stoichiometry is 2NH4+(org) = Nit2+(aq). In the case of Co/Ni separation using pre neutralised Cyanex 272 the highest separation is achieved when the Co/extractant molar ratio in the feeds is 1 : 4 and at the same time the optimal degree of neutralisation of the Cyanex 272 is about 50%. The adsorption of the extractants on solid surfaces may cause accumulation of solid fine particles at the interface between the aqueous and organic phases in metal extraction processes. Copper extraction processes are known to suffer of this problem. Experiments were carried out using model silica and mica particles. It was found that high copper loading, aromacity of the diluent, modification agents and the presence of aqueous phase decrease the adsorption of the hydroxyoxime on silica surfaces.
Resumo:
This thesis concentrates on studying the operational disturbance behavior of machine tools integrated into FMS. Operational disturbances are short term failures of machine tools which are especially disruptive to unattended or unmanned operation of FMS. The main objective was to examine the effect of operational disturbances on reliability and operation time distribution for machine tools. The theoretical part of the thesis covers the fimdamentals of FMS relating to the subject of this study. The concept of FMS, its benefits and operator's role in FMS operation are reviewed. The importance of reliability is presented. The terms describing the operation time of machine tools are formed by adopting standards and references. The concept of failure and indicators describing reliability and operational performance for machine tools in FMSs are presented. The empirical part of the thesis describes the research methodology which is a combination of automated (ADC) and manual data collection. By using this methodology it is possible to have a complete view of the operation time distribution for studied machine tools. Data collection was carried out in four FMSs consisting of a total of 17 machine tools. Each FMS's basic features and the signals of ADC are described. The indicators describing the reliability and operation time distribution of machine tools were calculated according to collected data. The results showed that operational disturbances have a significant influence on machine tool reliability and operational performance. On average, an operational disturbance occurs every 8,6 hours of operation time and has a down time of 0,53 hours. Operational disturbances cause a 9,4% loss in operation time which is twice the amount of losses caused by technical failures (4,3%). Operational disturbances have a decreasing influence on the utilization rate. A poor operational disturbance behavior decreases the utilization rate. It was found that the features of a part family to be machined and the method technology related to it are defining the operational disturbance behavior of the machine tool. Main causes for operational disturbances were related to material quality variations, tool maintenance, NC program errors, ATC and machine tool control. Operator's role was emphasized. It was found that failure recording activity of the operators correlates with the utilization rate. The more precisely the operators record the failure, the higher is the utilization rate. Also the FMS organizations which record failures more precisely have fewer operational disturbances.
Resumo:
This thesis concentrates on developing a practical local approach methodology based on micro mechanical models for the analysis of ductile fracture of welded joints. Two major problems involved in the local approach, namely the dilational constitutive relation reflecting the softening behaviour of material, and the failure criterion associated with the constitutive equation, have been studied in detail. Firstly, considerable efforts were made on the numerical integration and computer implementation for the non trivial dilational Gurson Tvergaard model. Considering the weaknesses of the widely used Euler forward integration algorithms, a family of generalized mid point algorithms is proposed for the Gurson Tvergaard model. Correspondingly, based on the decomposition of stresses into hydrostatic and deviatoric parts, an explicit seven parameter expression for the consistent tangent moduli of the algorithms is presented. This explicit formula avoids any matrix inversion during numerical iteration and thus greatly facilitates the computer implementation of the algorithms and increase the efficiency of the code. The accuracy of the proposed algorithms and other conventional algorithms has been assessed in a systematic manner in order to highlight the best algorithm for this study. The accurate and efficient performance of present finite element implementation of the proposed algorithms has been demonstrated by various numerical examples. It has been found that the true mid point algorithm (a = 0.5) is the most accurate one when the deviatoric strain increment is radial to the yield surface and it is very important to use the consistent tangent moduli in the Newton iteration procedure. Secondly, an assessment of the consistency of current local failure criteria for ductile fracture, the critical void growth criterion, the constant critical void volume fraction criterion and Thomason's plastic limit load failure criterion, has been made. Significant differences in the predictions of ductility by the three criteria were found. By assuming the void grows spherically and using the void volume fraction from the Gurson Tvergaard model to calculate the current void matrix geometry, Thomason's failure criterion has been modified and a new failure criterion for the Gurson Tvergaard model is presented. Comparison with Koplik and Needleman's finite element results shows that the new failure criterion is fairly accurate indeed. A novel feature of the new failure criterion is that a mechanism for void coalescence is incorporated into the constitutive model. Hence the material failure is a natural result of the development of macroscopic plastic flow and the microscopic internal necking mechanism. By the new failure criterion, the critical void volume fraction is not a material constant and the initial void volume fraction and/or void nucleation parameters essentially control the material failure. This feature is very desirable and makes the numerical calibration of void nucleation parameters(s) possible and physically sound. Thirdly, a local approach methodology based on the above two major contributions has been built up in ABAQUS via the user material subroutine UMAT and applied to welded T joints. By using the void nucleation parameters calibrated from simple smooth and notched specimens, it was found that the fracture behaviour of the welded T joints can be well predicted using present methodology. This application has shown how the damage parameters of both base material and heat affected zone (HAZ) material can be obtained in a step by step manner and how useful and capable the local approach methodology is in the analysis of fracture behaviour and crack development as well as structural integrity assessment of practical problems where non homogeneous materials are involved. Finally, a procedure for the possible engineering application of the present methodology is suggested and discussed.
Resumo:
This thesis introduces a real-time simulation environment based on the multibody simulation approach. The environment consists of components that are used in conventional product development, including computer aided drawing, visualization, dynamic simulation and finite element software architecture, data transfer and haptics. These components are combined to perform as a coupled system on one platform. The environment is used to simulate mobile and industrial machines at different stages of a product life time. Consequently, the demands of the simulated scenarios vary. In this thesis, a real-time simulation environment based on the multibody approach is used to study a reel mechanism of a paper machine and a gantry crane. These case systems are used to demonstrate the usability of the real-time simulation environment for fault detection purposes and in the context of a training simulator. In order to describe the dynamical performance of a mobile or industrial machine, the nonlinear equations of motion must be defined. In this thesis, the dynamical behaviour of machines is modelled using the multibody simulation approach. A multibody system may consist of rigid and flexible bodies which are joined using kinematic joint constraints while force components are used to describe the actuators. The strength of multibody dynamics relies upon its ability to describe nonlinearities arising from wearing of the components, friction, large rotations or contact forces in a systematic manner. For this reason, the interfaces between subsystems such as mechanics, hydraulics and control systems of the mechatronic machine can be defined and analyzed in a straightforward manner.
Resumo:
This study considered the current situation of solid and liquid biomass fuels in Finland. The fact that industry consumes more than half of the total primary energy, widely applied combined heat and power production and a high share of solid biomass fuels in the total energy consumption are specific to the Finnish energy system. Wood is the most important source of bioenergy in Finland, representing 20% of the total energy consumption in 2007. Almost 80% of the woodbased energy is recovered from industrial by-products and residues. As a member of the European Union, Finland has committed itself to the Union’s climate and energy targets, such as reducing its overall emissions of green house gases to at least 20% below 1990 levels by 2020, and increasing the share of renewable energy in the gross final consumption. The renewable energy target approved for Finland is 38%. The present National Climate and Energy Strategy was introduced in November 2008. The strategy covers climate and energy policy measures up to 2020, and in brief thereafter, up to 2050. In recent years, the actual emissions have exceeded the Kyoto commitment and the trend of emissions is on the increase. In 2007, the share of renewable energy in the gross final energy consumption was approximately 25% (360 PJ). Without new energy policy measures, the final consumption of renewable energy would increase to 380 PJ, which would be approximately only 31% of the final energy consumption. In addition, green house gas emissions would exceed the 1990 levels by 20%. Meeting the targets will need the adoption of more active energy policy measures in coming years. The international trade of biomass fuels has a substantial importance for the utilisation of bioenergy in Finland. In 2007, the total international trading of solid and liquid biomass fuels was approximately 77 PJ, of which import was 62 PJ. Most of the import is indirect and takes place within the forest industry’s raw wood imports. In 2007, as much as 21% of wood energy was based on foreign-origin wood. Wood pellets and tall oil form the majority of export streams of biomass fuels. The indirect import of wood fuels peaked in 2006 to 61 PJ. The foreseeable decline in raw wood import to Finland will decrease the indirect import of wood fuels. In 2004– 2007, the direct trade of solid and liquid biomass fuels has been on a moderate growth path. In 2007, the import of palm oil and export of bio-diesel emerged, as a large, 170 000 t/yr biodiesel plant came into operation in Porvoo.
Resumo:
Centrifugal compressors are widely used for example in refrigeration processes, the oil and gas industry, superchargers, and waste water treatment. In this work, five different vaneless diffusers and six different vaned diffusers are investigated numerically. The vaneless diffusers vary only by their diffuser width, so that four of the geometries have pinch implemented to them. Pinch means a decrease in the diffuser width. Four of the vaned diffusers have the same vane turning angle and a different number of vanes, and two have different vane turning angles. The flow solver used to solve the flow fields is Finflo, which is a Navier-Stokes solver. All the cases are modeled with the Chien's k – έ- turbulence model, and selected cases are modeled also with the k – ώ-SST turbulence model. All five vaneless diffusers and three vaned diffusers are investigated also experimentally. For each construction, the compressor operating map is measured according to relevant standards. In addition to this, the flow fields before and after the diffuser are measured with static and total pressure, flow angle and total temperature measurements. When comparing the computational results to the measured results, it is evident that the k – ώ-SST turbulence model predicts the flow fields better. The simulation results indicate that it is possible to improve the efficiency with the pinch, and according to the numerical results, the two best geometries are the ones with most pinch at the shroud. These geometries have approximately 4 percentage points higher efficiency than the unpinched vaneless diffusers. The hub pinch does not seem to have any major benefits. In general, the pinches make the flow fields before and after the diffuser more uniform. The pinch also seems to improve the impeller efficiency. This is down to two reasons. The major reason is that the pinch decreases the size of slow flow and possible backflow region located near the shroud after the impeller. Secondly, the pinches decrease the flow velocity in the tip clearance, leading to a smaller tip leakage flow and therefore slightly better impeller efficiency. Also some of the vaned diffusers improve the efficiency, the increment being 1...3 percentage points, when compared to the vaneless unpinched geometry. The measurement results confirm that the pinch is beneficial to the performance of the compressor. The flow fields are more uniform with the pinched cases, and the slow flow regions are smaller. The peak efficiency is approximately 2 percentage points and the design point efficiency approximately 4 percentage points higher with the pinched geometries than with the un- pinched geometry. According to the measurements, the two best geometries are the ones with the most pinch at the shroud, the case with the pinch only at the shroud being slightly better of the two. The vaned diffusers also have better efficiency than the vaneless unpinched geometries. However, the pinched cases have even better efficiencies. The vaned diffusers narrow the operating range considerably, whilst the pinch has no significant effect on the operating range.
Resumo:
The amount of water available is usually restricted, which leads to a situation where a complete understanding of the process, including water circulations and the influence of water components, is essential. The main aim of this thesis was to clarify the possibilities for the efficient use of residual peroxide by means of water circulation rearrangements. Rearranging water circulations and the reduction of water usage may cause new problems, such as metal induced peroxide decomposition that needs to be addressed. This thesis introduces theoretical methods of water circulations to combine two variables; effective utilization of residual peroxide and avoiding manganese in the alkaline peroxide bleaching stage. Results are mainly based on laboratory and mill site experiments concerning the utilization of residual peroxide. A simulation model (BALAS) was used to evaluate the manganese contents and residual peroxide doses. It was shown that with optimum recirculation of residual peroxide the brightness can be improved or chemical costs can be decreased. From the scientific perspective, it was also very important to discover that recycled peroxide was more effective pre-bleaching agent compared to fresh peroxide. This can be due to the organic acids i.e. per acetic acid in wash press filtrate that have been formed in alkaline bleaching stage. Even short retention time was adequate and the activation of residual peroxide using sodium hydroxide was not necessary. There are several possibilities for using residual peroxide in practice regarding bleaching. A typical modern mechanical pulping process line consist of defibering, screening, a disc filter, a bleach press, high consistency (HC) peroxide bleaching and a wash press. Furthermore there usually is not a particular medium consistency (MC) pre-bleaching stage that includes additional thickening equipment. The most advisable way to utilize residual peroxide in this kind of process is to recycle the wash press filtrate to the dilution of disc filter pulp (low MC pre-bleaching stage). An arrangement such as this would be beneficial in terms of the reduced convection of manganese to the alkaline bleaching stage. Manganese originates from wood material and will be removed to the water phase already in the early stages of the process. Recycling residual peroxide prior to the disc filter is not recommended because of low consistencies. Regarding water circulations, the novel point of view is that, it would be beneficial to divide water circulations into two sections and the critical location for the division is the disc filter. Both of these two sections have their own priority. Section one before the disc filter: manganese removal. Section two after the disc filter: brightening of pulp. This division can be carried out if the disc filter pulp is diluted only by wash press filtrate before the MC storage tower. The situation is even better if there is an additional press after the disc filter, which will improve the consistency of the pulp. This has a significant effect on the peroxide concentration in the MC pre-bleaching stage. In terms of manganese content, it is essential to avoid the use of disc filter filtrate in the bleach press and wash press showers. An additional cut-off press would also be beneficial for manganese removal. As a combination of higher initial brightness and lower manganese content, the typical brightness increase varies between approximately 0.5 and 1% ISO units after the alkaline peroxide bleaching stage. This improvement does not seem to be remarkable, but as it is generally known, the final brightness unit is the most expensive and difficult to achieve. The estimation of cost savings is not unambiguous. For example in GW/TMP mill case 0.6% ISO units higher final brightness gave 10% savings in the costs of bleaching chemicals. With an hypothetical 200 000 ton annual production, this means that the mill could save in the costs of bleaching chemicals more than 400 000 euros per year. In general, it can be said that there were no differences between the behavior of different types of processes (GW, PGW, TMP and BCTMP). The enhancement of recycling gave a similar response in all cases. However, we have to remember that the utilization of residual peroxide in older mills depends a great deal on the process equipment, the amount of water available and existing pipeline connections. In summary, it can be said that processes are individual and the same solutions cannot be applied to all cases.