157 resultados para Direct drive rotational friction welding
Resumo:
Tämän diplomityön tavoitteena on ollut selvittää, kuinka robotisoitua hitsausta on mahdollista hyödyntää teollisuuskaiteiden valmistuksessa. Tutkimusmenetelminä käytettiin kirjallisuusselvitystä, hitsauskokeita ja makrohietutkimuksia. Työssä keskityttiin robottihitsauksen menetelmiin ja työstä on rajattu pois kaikki kustannuslaskelmat sekä alumiinin hitsaus. Hitsattavat materiaalit olivat rakenneteräs ja ruostumaton teräs. Rakenneteräsputken koko oli 42,4 x 2,6 mm ja ruostumattoman putken koko 42,4 x 2,0 mm. Käytetyt liitosmuodot olivat T-liitoksia, joista suorassa T-liitoksessa putkien välinen kulma oli 90 astetta ja vinossa T-liitoksessa noin 45 astetta. Tehdyn selvitystyön ja hitsauskokeiden perusteella voidaan sanoa, että kaiteissa käytettävien materiaalipaksuuksien ja liitosmuotojen hitsaaminen robotilla on mahdollista. Hitsauksen lopputulos riippuu hitsausasennosta ja paras tulos saavutetaan, kun kappaletta pyöritetään hitsauksen aikana siten, että hitsaus tapahtuu koko ajan jalkoasennossa.
Resumo:
Työssä tutkittiin Ruukki Oyj:n suorasammutetusta S960QC-teräksestä valmistetun kuormaakantavan levyjen ristiliitoksen pienahitsien lujuutta, muodonmuutoskykyä ja vaurioitumismekanismia laajaan kokeelliseen aineistoon perustuen. Tärkeimpänä muuttujana koematriisissa olivat eri MAG-hitsausprosessit. Perinteisen kuumakaarihitsauksen vertailukohteena oli Kemppi Oy:n uusi adaptiivinen valokaaren pituutta säätävä WiseFusion-hitsaustoiminto kuuma- ja pulssikaarihitsauksessa. Näiden kolmen hitsausprosessin rinnalla varioitiin erisuuruisia a-mittoja, eri hitsauslisäaineita ja hitsin erikylkisyyttä. Lisäksi juuritunkeuman estämisen vaikutusta hitsien käyttäytymiseen tutkittiin täydentävällä koesarjalla, jossa tunkeuman muodostuminen estettiin levyjen väliin asetetulla volframilevyllä. Työn perimmäisenä tavoitteena oli selvittää syy aiemmassa tutkimuksessa havaitulle pienahitsien vaurioitumiselle leikkautumalla sularajaa pitkin. Sularajan suhteellista pituutta saadaan kasvatettua estämällä hitsin juuritunkeuma ja absoluuttista pituutta saadaan lisää kateettipoikkeaman avulla. Lisäksi tutkimuksessa oli tarkoitus tuoda esille suurlujuusteräksisen liitoksen eri mitoituslähtökohdat (mm. lämmöntuonnin kontrollointi). Tämän vuoksi hitsausparametrit mitattiin jännitteen ja virran hetkellisiin arvoihin perustuen, jolloin kuuma- ja pulssikaarihitsauksen laskennalliset hitsaustehot ovat vertailukelpoisia. Koehitseistä valmistettiin hieet hitsien tarkan geometrian määrittämiseksi ja liitoksen mekaaniset ominaisuudet tutkittiin vetokokeella. Tulosten perusteella sularajavaurio aktivoituu pulssikaarella hitsatuissa koekappaleissa. Tämä aiheutunee pulssi- ja kuumakaarihitsauksen sularajan mikrorakenteiden eroavaisuudesta. Sularajavaurio näyttää huonontavan hitsien muodonmuutoskykyä, mutta jatkokokeita tuloksen verifioimiseksi on tehtävä. S960QC-teräkselle ominaisen pehmenneen vyöhykkeen vaurio ei aktivoitunut, vaikka Ruukin antamat jäähtymisaikasuositukset ylitettiin reilusti.
Resumo:
Joining processes and techniques need to meet the trend of new applications and the development of new materials. The application in connection with thick and thin plates in industrial fields is wide and the joining technology is in very urgent need. The laser-TIG hybrid welding technology can play the respective advantages of both of them. One major advantage of the hybrid laser-TIG welding technology is its efficient use of laser energy. Additionally, it can develop into a high and new advanced welding technology and become a hot spot in both the application and research area. This thesis investigated laser –TIG hybrid welding with the aim of enlightening the reader on its advantages, disadvantages and future areas of improvement. The main objective is to investigate laser-TIG hybrid on the welding of various metals (steels, magnesium, aluminium etc.). In addition, it elaborates on various possible combinations on hybrid laser-TIG welding technology and their benefits. The possibility of using laser-TIG hybrid in welding of thick materials was investigated. The method applied in carrying out this research is by using literature review. The results showed that hybrid laser-TIG is applicable to almost all weldable metals. Also it proves to be effective in welding refractive metals. The possibility of welding with or without filler materials is of economic advantage especially in welding of materials with no filler material. Thick plate’s hybrid laser-TIG welding is showing great prospects although it normally finds its used in welding thin materials in the range of 0.4 to 0.8 mm. The findings show that laser-TIG hybrid welding can be a versatile welding process and therefore will be increasingly used industrially due to its numerous advantages and the development of new TIG arc that enhances its capabilities.
Resumo:
Diplomityössä tarkastellaan hitsaavan verkoston laadunhallintaa ja siinä ilmeneviä erilaisia ongelmakohtia. Tämän lisäksi työssä tarkastellaan kolmen eri laatutyökalun Lean, Six Sigma ja Total Welding Management soveltamista hitsaavan verkoston laadunhallinnassa. Teoriaosassa käsitellään sekä yleisesti että hitsauksen osalta laatua ja laadunhallintaa, sekä edellä mainittuja laatutyökaluja. Tutkimusosaan tietoja hitsaavista verkostoista kerättiin kaikkiaan kolmesta eri verkostosta. Näiden kerättyjen tietojen pohjalta tarkasteltiin valittujen laatutyökalujen soveltuvuutta verkostomaiseen käyttöön. Verkostoitunut toiminta aiheuttaa monia uusia haasteita yritysten laadunhallinnalle verrattuna yksittäisiin hitsaaviin yrityksiin. Suurimpia tutkimuksessa havaittuja ongelmakohtia ovat suunnittelun ja valmistuksen yhteistyön erilaiset puutteet, laatutasoon ja sen varmistukseen liittyvät asiat, sekä verkoston sisälle syntyvä niin sanottu hiljainen tieto ja sen häviäminen. Tutkimuksen tarkastelujen perusteella havaittiin, että kaikkien tutkimukseen valitun kolmen laatutyökalun soveltaminen myös verkostomaisessa toiminnassa on mahdollista, mutta se vaatii huomattavasti suurempaa työpanosta kuin soveltaminen yksittäisessä yrityksessä. Myös näiden kaikkien kolmen työkalun yhtä aikainen käyttö on mahdollista. Juuri oikean työkalun valitseminen kullekin hitsaavalle verkostolle vaatii tarkkaa perehtymistä verkostoon ja sen tilanteeseen.
Resumo:
Welding has a growing role in modern world manufacturing. Welding joints are extensively used from pipes to aerospace industries. Prediction of welding residual stresses and distortions is necessary for accurate evaluation of fillet welds in relation to design and safety conditions. Residual stresses may be beneficial or detrimental, depending whether they are tensile or compressive and the loading. They directly affect the fatigue life of the weld by impacting crack growth rate. Beside theoretical background of residual stresses this study calculates residual stresses and deformations due to localized heating by welding process and subsequent rapid cooling in fillet welds. Validated methods are required for this purpose due to complexity of process, localized heating, temperature dependence of material properties and heat source. In this research both empirical and simulation methods were used for the analysis of welded joints. Finite element simulation has become a popular tool of prediction of welding residual stresses and distortion. Three different cases with and without preload have been modeled during this study. Thermal heat load set is used by calculating heat flux from the given heat input energy. First the linear and then nonlinear material behavior model is modeled for calculation of residual stresses. Experimental work is done to calculate the stresses empirically. The results from both the methods are compared to check their reliability. Residual stresses can have a significant effect on fatigue performance of the welded joints made of high strength steel. Both initial residual stress state and subsequent residual stress relaxation need to be considered for accurate description of fatigue behavior. Tensile residual stresses are detrimental and will reduce the fatigue life and compressive residual stresses will increase it. The residual stresses follow the yield strength of base or filler material and the components made of high strength steel are typically thin, where the role of distortion is emphasizing.
Resumo:
Kandidaatintyön johdantokappaleessa esitellään vetyperoksidi ja mihin sitä käytetään teollisuudessa. Työssä vertaillaan antrakinoniprosessia ja suoraa prosessia sekä selvitetään nykyisin enemmän vetyperoksidituotantoon käytetyn antrakinoniprosessin ongelmakohdat ja osoitetaan, miksi suora synteesi vetyperoksidin tuotannossa olisi parempi vaihtoehto. Kandidaatintyön käsittelee suurilta osin turvallisuusongelmia, joita esiintyy suoran synteesin yhteydessä. Kirjallisuudesta on etsitty ratkaisuja näihin ongelmiin, kuten membraaniprosessin käyttöä räjähdysvaaran välttämiseksi. Pienemmän reaktorin eli ns. mikroreaktorin käyttö tuo mukanaan monia etuja vetyperoksidin tuotantoon. Tällöin prosessi on turvallisempi ja sitä on helpompi hallita. Mikroreaktorissa voidaan käyttää korkeampia lämpötiloja ja paineita kuin makroreaktorilla ilman, että räjähdysvaara prosessissa kasvaisi. Mikroreaktorin sisällä olevat mikrokanavat luovat turvallisen ympäristön synteesille. Aspen plus – simulointiohjelmalla mallinnettiin ja simulointiin suoran prosessin kriittisiä virtoja mikroreaktorissa. Tarkoituksena oli löytää virrat, joissa kulkee mahdollisesti räjähtävä kaasuseos. Kaasumaiset prosessivirrat ovat kriittisimmät vetyperoksidin suorassa synteesissä, koska ne aiheuttavat todennäköisemmin räjähdyksen kuin nestemäiset prosessivirrat. Kaikkein eniten prosessiturvallisuutta uhkaavat ainevirrat ennen ja jälkeen mikroreaktoria.
Resumo:
The Arctic region becoming very active area of the industrial developments since it may contain approximately 15-25% of the hydrocarbon and other valuable natural resources which are in great demand nowadays. Harsh operation conditions make the Arctic region difficult to access due to low temperatures which can drop below -50 °C in winter and various additional loads. As a result, newer and modified metallic materials are implemented which can cause certain problems in welding them properly. Steel is still the most widely used material in the Arctic regions due to high mechanical properties, cheapness and manufacturability. Moreover, with recent steel manufacturing development it is possible to make up to 1100 MPa yield strength microalloyed high strength steel which can be operated at temperatures -60 °C possessing reasonable weldability, ductility and suitable impact toughness which is the most crucial property for the Arctic usability. For many years, the arc welding was the most dominant joining method of the metallic materials. Recently, other joining methods are successfully implemented into welding manufacturing due to growing industrial demands and one of them is the laser-arc hybrid welding. The laser-arc hybrid welding successfully combines the advantages and eliminates the disadvantages of the both joining methods therefore produce less distortions, reduce the need of edge preparation, generates narrower heat-affected zone, and increase welding speed or productivity significantly. Moreover, due to easy implementation of the filler wire, accordingly the mechanical properties of the joints can be manipulated in order to produce suitable quality. Moreover, with laser-arc hybrid welding it is possible to achieve matching weld metal compared to the base material even with the low alloying welding wires without excessive softening of the HAZ in the high strength steels. As a result, the laser-arc welding methods can be the most desired and dominating welding technology nowadays, and which is already operating in automotive and shipbuilding industries with a great success. However, in the future it can be extended to offshore, pipe-laying, and heavy equipment industries for arctic environment. CO2 and Nd:YAG laser sources in combination with gas metal arc source have been used widely in the past two decades. Recently, the fiber laser sources offered high power outputs with excellent beam quality, very high electrical efficiency, low maintenance expenses, and higher mobility due to fiber optics. As a result, fiber laser-arc hybrid process offers even more extended advantages and applications. However, the information about fiber or disk laser-arc hybrid welding is very limited. The objectives of the Master’s thesis are concentrated on the study of fiber laser-MAG hybrid welding parameters in order to understand resulting mechanical properties and quality of the welds. In this work only ferrous materials are reviewed. The qualitative methodological approach has been used to achieve the objectives. This study demonstrates that laser-arc hybrid welding is suitable for welding of many types, thicknesses and strength of steels with acceptable mechanical properties along very high productivity. New developments of the fiber laser-arc hybrid process offers extended capabilities over CO2 laser combined with the arc. This work can be used as guideline in hybrid welding technology with comprehensive study the effect of welding parameter on joint quality.
Resumo:
Gas shielding plays an important role in laser welding phenomena. This is because it does not only provide shielding against oxidization but it has an effect in beam absorption and thus welds penetration. The goal of this thesis is to study and compare the effects of different shielding gas feeding methods in laser welding of steel. Research method is a literature survey. It is found that the inclination angle and the arrangement of the gas feeding nozzles affect the phenomena significantly. It is suggested that by designing shielding gas feeding case specifically better welding results can be obtained.
Resumo:
This thesis studies quality, productivity and economy in welding manufacturing in West African states such as Ghana, Nigeria and Cameroon. The study consists of two parts: the first part, which forms the theoretical background, reviews relevant literature concerning the metal and welding industries, and measurement of welding quality, productivity and economy. The second part, which is the empirical part, aims to identify activities in the metal manufacturing industries where welding is extensively used and to determine the extent of welding quality, productivity and economy measurements in companies operating in the metal manufacturing industries. Additionally, the thesis aims to identify challenges that companies face and to assess the feasibility of creating a network to address these issues. The research methods used in the empirical part are the case study (qualitative) method and the survey (quantitative) method. However, the case study method was used to elicit information from companies in Ghana, while the survey method was used to elicit information from companies in Nigeria and Cameroon. The study considers important areas that contribute to creating awareness and understanding of the current situation of the welding industry in West Africa. These areas include the metal manufacturing industrial sector, metal products manufactured, metal production and manufacturing systems deployed, welding quality, productivity and economy measurement systems utilized, equipment and materials on the markets, general challenges facing companies in welding operations, welding technology programs and research in local universities, and SWOT analysis of the various West African states. The notable findings indicate that majority of the companies operate in the constructionindustrial sector. Also, majority of the companies are project manufacturing oriented, thus provide services to customers operating in the growing industries such as the oil and gas, mining, food and the energy industry. In addition, only few companies are certified under standards such as ISO 9001, ISO 3834, and OHSAS 18001. More so, majority of the companies employ manual welding technique, and shielded metal arc welding (SMAW) as the commonly used welding process. Finally, welder salary is about € 300 / month as of June 2013 and the average operations turnover of medium to large companies is about € 5 million / year as at 2012. Based on analysis of the results of the study, it is noted that while welding activities are growing, the availability of cheap labor, the need for company and welder qualification and certification, and the need to manufacture innovative products through developmental projects (transfer of welding expertise and technology) remain as untapped opportunities in the welding industry in the West African states. The study serves as a solid platform for further research and concludes with several recommendations for development of the West African welding industry.
Resumo:
Permanent magnet drives with nominal power over 10 kW were not a cost-sufficient system 25 years ago due to high material expenses. The improvements in motor drives, the rise in competition and the tightening of standards and regulations have caused that the PM-drives are more and more common in the over 10 kW nominal power range. The goal of this thesis is to research the performance in relation to nominal power of a PM-drive technique that is vastly increasing its popularity in fan related devices. The studied motor technique brushless direct current drive (BLDC) consists of a voltage source inverter, permanent motor and six-step-control. The reference drive is a brushless alternating current drive (BLAC) which consists of a VSI, PM and a hysteresis control. As a conclusion there are no major obstacles that would impede the BLDC-drive technique from expanding to larger power stages. The following factors must be taken into consideration when designing a BLDC-drive: motor’s current change rate, inverter switching frequency, motor’s nominal electric frequency, phase inductance and the current handling capability of the inverter. The fluctuating material costs create instability to the end prices of PM-motors that can in the worst case lead to diminished interest towards BLDC- and PM-drives in general.
Resumo:
Yandex is the dominant search engine in Russia, followed by the world leader Google. This study focuses on the performance differences between the two in search advertising in the context of tourism, by running two identical campaigns and measuring the KPI’s, such as CPA (cost-per-action), on both campaigns. Search engine advertising is a new and fast changing form of advertising, which should be studied frequently in order to keep up with the changes. Research was done as an experimental study in cooperation with a Finnish tourism company and the data is gathered from the clickstream and not from questionnaires, which is recommended method by the literature. The results of the study suggests that Yandex.Direct performed better in the selected niche and that the individual campaign planning for Yandex.Direct and Google AdWords is an important part of the optimization of search advertising in Russia.
Resumo:
This doctoral thesis introduces an improved control principle for active du/dt output filtering in variable-speed AC drives, together with performance comparisons with previous filtering methods. The effects of power semiconductor nonlinearities on the output filtering performance are investigated. The nonlinearities include the timing deviation and the voltage pulse waveform distortion in the variable-speed AC drive output bridge. Active du/dt output filtering (ADUDT) is a method to mitigate motor overvoltages in variable-speed AC drives with long motor cables. It is a quite recent addition to the du/dt reduction methods available. This thesis improves on the existing control method for the filter, and concentrates on the lowvoltage (below 1 kV AC) two-level voltage-source inverter implementation of the method. The ADUDT uses narrow voltage pulses having a duration in the order of a microsecond from an IGBT (insulated gate bipolar transistor) inverter to control the output voltage of a tuned LC filter circuit. The filter output voltage has thus increased slope transition times at the rising and falling edges, with an opportunity of no overshoot. The effect of the longer slope transition times is a reduction in the du/dt of the voltage fed to the motor cable. Lower du/dt values result in a reduction in the overvoltage effects on the motor terminals. Compared with traditional output filtering methods to accomplish this task, the active du/dt filtering provides lower inductance values and a smaller physical size of the filter itself. The filter circuit weight can also be reduced. However, the power semiconductor nonlinearities skew the filter control pulse pattern, resulting in control deviation. This deviation introduces unwanted overshoot and resonance in the filter. The controlmethod proposed in this thesis is able to directly compensate for the dead time-induced zero-current clamping (ZCC) effect in the pulse pattern. It gives more flexibility to the pattern structure, which could help in the timing deviation compensation design. Previous studies have shown that when a motor load current flows in the filter circuit and the inverter, the phase leg blanking times distort the voltage pulse sequence fed to the filter input. These blanking times are caused by excessively large dead time values between the IGBT control pulses. Moreover, the various switching timing distortions, present in realworld electronics when operating with a microsecond timescale, bring additional skew to the control. Left uncompensated, this results in distortion of the filter input voltage and a filter self-induced overvoltage in the form of an overshoot. This overshoot adds to the voltage appearing at the motor terminals, thus increasing the transient voltage amplitude at the motor. This doctoral thesis investigates the magnitude of such timing deviation effects. If the motor load current is left uncompensated in the control, the filter output voltage can overshoot up to double the input voltage amplitude. IGBT nonlinearities were observed to cause a smaller overshoot, in the order of 30%. This thesis introduces an improved ADUDT control method that is able to compensate for phase leg blanking times, giving flexibility to the pulse pattern structure and dead times. The control method is still sensitive to timing deviations, and their effect is investigated. A simple approach of using a fixed delay compensation value was tried in the test setup measurements. The ADUDT method with the new control algorithm was found to work in an actual motor drive application. Judging by the simulation results, with the delay compensation, the method should ultimately enable an output voltage performance and a du/dt reduction that are free from residual overshoot effects. The proposed control algorithm is not strictly required for successful ADUDT operation: It is possible to precalculate the pulse patterns by iteration and then for instance store them into a look-up table inside the control electronics. Rather, the newly developed control method is a mathematical tool for solving the ADUDT control pulses. It does not contain the timing deviation compensation (from the logic-level command to the phase leg output voltage), and as such is not able to remove the timing deviation effects that cause error and overshoot in the filter. When the timing deviation compensation has to be tuned-in in the control pattern, the precalculated iteration method could prove simpler and equally good (or even better) compared with the mathematical solution with a separate timing compensation module. One of the key findings in this thesis is the conclusion that the correctness of the pulse pattern structure, in the sense of ZCC and predicted pulse timings, cannot be separated from the timing deviations. The usefulness of the correctly calculated pattern is reduced by the voltage edge timing errors. The doctoral thesis provides an introductory background chapter on variable-speed AC drives and the problem of motor overvoltages and takes a look at traditional solutions for overvoltage mitigation. Previous results related to the active du/dt filtering are discussed. The basic operation principle and design of the filter have been studied previously. The effect of load current in the filter and the basic idea of compensation have been presented in the past. However, there was no direct way of including the dead time in the control (except for solving the pulse pattern manually by iteration), and the magnitude of nonlinearity effects had not been investigated. The enhanced control principle with the dead time handling capability and a case study of the test setup timing deviations are the main contributions of this doctoral thesis. The simulation and experimental setup results show that the proposed control method can be used in an actual drive. Loss measurements and a comparison of active du/dt output filtering with traditional output filtering methods are also presented in the work. Two different ADUDT filter designs are included, with ferrite core and air core inductors. Other filters included in the tests were a passive du/dtfilter and a passive sine filter. The loss measurements incorporated a silicon carbide diode-equipped IGBT module, and the results show lower losses with these new device technologies. The new control principle was measured in a 43 A load current motor drive system and was able to bring the filter output peak voltage from 980 V (the previous control principle) down to 680 V in a 540 V average DC link voltage variable-speed drive. A 200 m motor cable was used, and the filter losses for the active du/dt methods were 111W–126 W versus 184 W for the passive du/dt. In terms of inverter and filter losses, the active du/dt filtering method had a 1.82-fold increase in losses compared with an all-passive traditional du/dt output filter. The filter mass with the active du/dt method was 17% (2.4 kg, air-core inductors) compared with 14 kg of the passive du/dt method filter. Silicon carbide freewheeling diodes were found to reduce the inverter losses in the active du/dt filtering by 18% compared with the same IGBT module with silicon diodes. For a 200 m cable length, the average peak voltage at the motor terminals was 1050 V with no filter, 960 V for the all-passive du/dt filter, and 700 V for the active du/dt filtering applying the new control principle.
Resumo:
Adaptive control systems are one of the most significant research directions of modern control theory. It is well known that every mechanical appliance’s behavior noticeably depends on environmental changes, functioning-mode parameter changes and changes in technical characteristics of internal functional devices. An adaptive controller involved in control process allows reducing an influence of such changes. In spite of this such type of control methods is applied seldom due to specifics of a controller designing. The work presented in this paper shows the design process of the adaptive controller built by Lyapunov’s function method for the Hydraulic Drive. The calculation needed and the modeling were conducting with MATLAB® software including Simulink® and Symbolic Math Toolbox™ etc. In the work there was applied the Jacobi matrix linearization of the object’s mathematical model and derivation of the suitable reference models based on Newton’s characteristic polynomial. The intelligent adaptive to nonlinearities algorithm for solving Lyapunov’s equation was developed. Developed algorithm works properly but considered plant is not met requirement of functioning with. The results showed confirmation that adaptive systems application significantly increases possibilities in use devices and might be used for correction a system’s behavior dynamics.
Resumo:
The direct synthesis from hydrogen and oxygen is a green alternative for production of hydrogen peroxide. However, this process suffers from two challenges. Firstly, mixtures of hydrogen and oxygen are explosive over a wide range of concentrations (4-94% H2 in O2). Secondly, the catalytic reaction of hydrogen and oxygen involves several reaction pathways, many of them resulting in water production and therfore decreasing selectivity. The present work deals with these two challenges. The safety problem was dealed by employing a novel microstructured reactor. Selectivity of the reaction was highly improved by development a set of new catalysts. The final goal was to develop an effective and safe continuous process for direct synthesis of hydrogen peroxide from H2 and O2. Activated carbon cloth and Sibunit were examined as the catalysts’ supports. Palladium and gold monometallic and palladium-gold bimetallic catalysts were thoroughly investigated by numerous kinetic experiments performed in a tailored batch reactor and several catalyst charachterization methods. A complete set of data for direct synthesis of H2O2 and its catalytic decomposition and hydrogenation was obtained. These data were used to assess factors influencing selectivity and activity of the catalysts in direct synthesis of H2O2 as well as its decomposition and hydrogenation. A novel microstructured reactor was developed based on hydrodynamics and mass transfer studies in prototype microstractural plates. The shape and the size of the structural elements in the microreactor plate were optimized in a way to get high gas-liquid interfacial area and gas-liquid mass transfer. Finally, empirical correlations for the volumetric mass transfer coefficient were derived. A bench-scale continuous process was developed by using the novel microstructral plate reactor. A series of kinetic experiments were performed to investigate the effects of the gas and the liquid feed rates and their ratio, the amount of the catalyst, the gas feed composition and pressure on the final rate of H2O2 production and selectivity.
Resumo:
The dissertation proposes two control strategies, which include the trajectory planning and vibration suppression, for a kinematic redundant serial-parallel robot machine, with the aim of attaining the satisfactory machining performance. For a given prescribed trajectory of the robot's end-effector in the Cartesian space, a set of trajectories in the robot's joint space are generated based on the best stiffness performance of the robot along the prescribed trajectory. To construct the required system-wide analytical stiffness model for the serial-parallel robot machine, a variant of the virtual joint method (VJM) is proposed in the dissertation. The modified method is an evolution of Gosselin's lumped model that can account for the deformations of a flexible link in more directions. The effectiveness of this VJM variant is validated by comparing the computed stiffness results of a flexible link with the those of a matrix structural analysis (MSA) method. The comparison shows that the numerical results from both methods on an individual flexible beam are almost identical, which, in some sense, provides mutual validation. The most prominent advantage of the presented VJM variant compared with the MSA method is that it can be applied in a flexible structure system with complicated kinematics formed in terms of flexible serial links and joints. Moreover, by combining the VJM variant and the virtual work principle, a systemwide analytical stiffness model can be easily obtained for mechanisms with both serial kinematics and parallel kinematics. In the dissertation, a system-wide stiffness model of a kinematic redundant serial-parallel robot machine is constructed based on integration of the VJM variant and the virtual work principle. Numerical results of its stiffness performance are reported. For a kinematic redundant robot, to generate a set of feasible joints' trajectories for a prescribed trajectory of its end-effector, its system-wide stiffness performance is taken as the constraint in the joints trajectory planning in the dissertation. For a prescribed location of the end-effector, the robot permits an infinite number of inverse solutions, which consequently yields infinite kinds of stiffness performance. Therefore, a differential evolution (DE) algorithm in which the positions of redundant joints in the kinematics are taken as input variables was employed to search for the best stiffness performance of the robot. Numerical results of the generated joint trajectories are given for a kinematic redundant serial-parallel robot machine, IWR (Intersector Welding/Cutting Robot), when a particular trajectory of its end-effector has been prescribed. The numerical results show that the joint trajectories generated based on the stiffness optimization are feasible for realization in the control system since they are acceptably smooth. The results imply that the stiffness performance of the robot machine deviates smoothly with respect to the kinematic configuration in the adjacent domain of its best stiffness performance. To suppress the vibration of the robot machine due to varying cutting force during the machining process, this dissertation proposed a feedforward control strategy, which is constructed based on the derived inverse dynamics model of target system. The effectiveness of applying such a feedforward control in the vibration suppression has been validated in a parallel manipulator in the software environment. The experimental study of such a feedforward control has also been included in the dissertation. The difficulties of modelling the actual system due to the unknown components in its dynamics is noticed. As a solution, a back propagation (BP) neural network is proposed for identification of the unknown components of the dynamics model of the target system. To train such a BP neural network, a modified Levenberg-Marquardt algorithm that can utilize an experimental input-output data set of the entire dynamic system is introduced in the dissertation. Validation of the BP neural network and the modified Levenberg- Marquardt algorithm is done, respectively, by a sinusoidal output approximation, a second order system parameters estimation, and a friction model estimation of a parallel manipulator, which represent three different application aspects of this method.