95 resultados para Systems of systems
Resumo:
Increased rotational speed brings many advantages to an electric motor. One of the benefits is that when the desired power is generated at increased rotational speed, the torque demanded from the rotor decreases linearly, and as a consequence, a motor of smaller size can be used. Using a rotor with high rotational speed in a system with mechanical bearings can, however, create undesirable vibrations, and therefore active magnetic bearings (AMBs) are often considered a good option for the main bearings, as the rotor then has no mechanical contact with other parts of the system but levitates on the magnetic forces. On the other hand, such systems can experience overloading or a sudden shutdown of the electrical system, whereupon the magnetic field becomes extinct, and as a result of rotor delevitation, mechanical contact occurs. To manage such nonstandard operations, AMB-systems require mechanical touchdown bearings with an oversized bore diameter. The need for touchdown bearings seems to be one of the barriers preventing greater adoption of AMB technology, because in the event of an uncontrolled touchdown, failure may occur, for example, in the bearing’s cage or balls, or in the rotor. This dissertation consists of two parts: First, touchdown bearing misalignment in the contact event is studied. It is found that misalignment increases the likelihood of a potentially damaging whirling motion of the rotor. A model for analysis of the stresses occurring in the rotor is proposed. In the studies of misalignment and stresses, a flexible rotor using a finite element approach is applied. Simplified models of cageless and caged bearings are used for the description of touchdown bearings. The results indicate that an increase in misalignment can have a direct influence on the bending and shear stresses occurring in the rotor during the contact event. Thus, it was concluded that analysis of stresses arising in the contact event is essential to guarantee appropriate system dimensioning for possible contact events with misaligned touchdown bearings. One of the conclusions drawn from the first part of the study is that knowledge of the forces affecting the balls and cage of the touchdown bearings can enable a more reliable estimation of the service life of the bearing. Therefore, the second part of the dissertation investigates the forces occurring in the cage and balls of touchdown bearings and introduces two detailed models of touchdown bearings in which all bearing parts are modelled as independent bodies. Two multibody-based two-dimensional models of touchdown bearings are introduced for dynamic analysis of the contact event. All parts of the bearings are modelled with geometrical surfaces, and the bodies interact with each other through elastic contact forces. To assist in identification of the forces affecting the balls and cage in the contact event, the first model describes a touchdown bearing without a cage, and the second model describes a touchdown bearing with a cage. The introduced models are compared with the simplified models used in the first part of the dissertation through parametric study. Damages to the rotor, cage and balls are some of the main reasons for failures of AMB-systems. The stresses in the rotor in the contact event are defined in this work. Furthermore, the forces affecting key bodies of the bearings, cage and balls can be studied using the models of touchdown bearings introduced in this dissertation. Knowledge obtained from the introduced models is valuable since it can enable an optimum structure for a rotor and touchdown bearings to be designed.
Resumo:
The study develops an approach that tries to validate software functionality to work systems needs in SMEs. The formulated approach is constructed by using a SAAS based software i.e., work collaboration service (WCS), and SMEs as the elements of study. Where the WCS’s functionality is qualified to the collaboration needs that exist in operational and project work within SMEs. For this research constructivist approach and case study method is selected because the nature of the current study requires an in depth study of the work collaboration service as well as a detailed study of the work systems within different enterprises. Four different companies are selected in which fourteen interviews are conducted to gather data pertaining. The work systems method and framework are used as a central part of the approach to collect, analyze and interpret the enterprises work systems model and the underlying collaboration needs on operational and project work. On the other hand, the functional model of the WCS and its functionality is determined from functional model analysis, software testing, documentation and meetings with the service vendor. The enterprise work system model and the WCS model are compared to reveal how work progression differs between the two and make visible unaddressed stages of work progression. The WCS functionality is compared to work systems collaboration needs to ascertain if the service will suffice the needs of the project and operational work under study. The unaddressed needs provide opportunities to improve the functionality of the service for better conformity to the needs of enterprise and work. The results revealed that the functional models actually differed in how operational and project work progressed within the stages. WCS shared similar stages of work progression apart from the stages of identification and acceptance, and progress and completion stages were only partially addressed. Conclusion is that the identified unaddressed needs such as, single point of reference, SLA and OLA inclusion etc., should be implemented or improved within the WCS at appropriate stages of work to gain better compliance of the service to the needs of the enterprise an work itself. The developed approach can hence be used to carry out similar analysis for the conformance of pre-built software functionality to work system needs with SMEs.
Resumo:
The growth of the companies working in the Logistics area has raised the need for using several Logistics systems that can meet the increased requirements in business processes. Different companies may use one or more Logistics systems internally and may use different Logistics systems that other collaborated companies use. Furthermore, these Logistics systems are required to communicate with each other in order to process and manage the flow of the information. Integrating the Logistics systems is beneficial as it allows interaction between the whole systems and services instead of the need to replace them. In addition, it improves the efficiency, lowers the possible errors in the supply chain, reduces the costs and facilitates the access of suppliers and customers to the information. This in turn leads to better relationships with both suppliers and customers. Usually local integration of several Logistics systems is not very difficult, especially that mostly the companies buy their system from a single source. However, the case is different for integrating several logistics systems across the companies’ borders. In this case, there are many factors play major roles in limiting the integration, such as using different systems and different output. This thesis highlights these factors and challenges, demonstrates some solutions for the logistics inter-organizational integration from the perspective of information systems and presents some approaches for integrating these systems. There are many studies about the integration inside a company but fewer studies focused about the technical side and the information systems integration across company’s borders or what is called inter-organizational integration. This study is a literature review that aims at illustrating the challenges, the requirements and some approaches in inter-organizational logistics information systems integration of logistics systems across the companies’ borders.
Resumo:
The purpose of this master’s thesis is to gain an understanding of passive safety systems’ role in modern nuclear reactors projects and to research the failure modes of passive decay heat removal safety systems which use phenomenon of natural circulation. Another purpose is to identify the main physical principles and phenomena which are used to establish passive safety tools in nuclear power plants. The work describes passive decay heat removal systems used in AES-2006 project and focuses on the behavior of SPOT PG system. The descriptions of the main large-scale research facilities of the passive safety systems of the AES-2006 power plant are also included. The work contains the calculations of the SPOT PG system, which was modeled with thermal-hydraulic system code TRACE. The dimensions of the calculation model are set according to the dimensions of the real SPOT PG system. In these calculations three parameters are investigated as a function of decay heat power: the pressure of the system, the natural circulation mass flow rate around the closed loop, and the level of liquid in the downcomer. The purpose of the calculations is to test the ability of the SPOT PG system to remove the decay heat from the primary side of the nuclear reactor in case of failure of one, two, or three loops out of four. The calculations show that three loops of the SPOT PG system have adequate capacity to provide the necessary level of safety. In conclusion, the work supports the view that passive systems could be widely spread in modern nuclear projects.
Resumo:
Transmission system operators and distribution system operators are experiencing new challenges in terms of reliability, power quality, and cost efficiency. Although the potential of energy storages to face those challenges is recognized, the economic implications are still obscure, which introduce the risk into the business models. This thesis aims to investigate the technical and economic value indicators of lithium-ion battery energy storage systems (BESS) in grid-scale applications. In order to do that, a comprehensive performance lithium-ion BESS model with degradation effects estimation is developed. The model development process implies literature review on lifetime modelling, use, and modification of previous study progress, building the additional system parts and integrating it into a complete tool. The constructed model is capable of describing the dynamic behavior of the BESS voltage, state of charge, temperature and capacity loss. Five control strategies for BESS unit providing primary frequency regulation are implemented, in addition to the model. The questions related to BESS dimensioning and the end of life (EoL) criterion are addressed. Simulations are performed with one-month real frequency data acquired from Fingrid. The lifetime and cost-benefit analysis of the simulation results allow to compare and determine the preferable control strategy. Finally, the study performs the sensitivity analysis of economic profitability with variable size, EoL and system price. The research reports that BESS can be profitable in certain cases and presents the recommendations.