98 resultados para Scenario Programming, Markup Language, End User Programming
Resumo:
In this thesis, simple methods have been sought to lower the teacher’s threshold to start to apply constructive alignment in instruction. From the phases of the instructional process, aspects that can be improved with little effort by the teacher have been identified. Teachers have been interviewed in order to find out what students actually learn in computer science courses. A quantitative analysis of the structured interviews showed that in addition to subject specific skills and knowledge, students learn many other skills that should be mentioned in the learning outcomes of the course. The students’ background, such as their prior knowledge, learning style and culture, affects how they learn in a course. A survey was conducted to map the learning styles of computer science students and to see if their cultural background affected their learning style. A statistical analysis of the data indicated that computer science students are different learners than engineering students in general and that there is a connection between the student’s culture and learning style. In this thesis, a simple self-assessment scale that is based on Bloom’s revised taxonomy has been developed. A statistical analysis of the test results indicates that in general the scale is quite reliable, but single students still slightly overestimate or under-estimate their knowledge levels. For students, being able to follow their own progress is motivating, and for a teacher, self-assessment results give information about how the class is proceeding and what the level of the students’ knowledge is.
Resumo:
Software plays an important role in our society and economy. Software development is an intricate process, and it comprises many different tasks: gathering requirements, designing new solutions that fulfill these requirements, as well as implementing these designs using a programming language into a working system. As a consequence, the development of high quality software is a core problem in software engineering. This thesis focuses on the validation of software designs. The issue of the analysis of designs is of great importance, since errors originating from designs may appear in the final system. It is considered economical to rectify the problems as early in the software development process as possible. Practitioners often create and visualize designs using modeling languages, one of the more popular being the Uni ed Modeling Language (UML). The analysis of the designs can be done manually, but in case of large systems, the need of mechanisms that automatically analyze these designs arises. In this thesis, we propose an automatic approach to analyze UML based designs using logic reasoners. This approach firstly proposes the translations of the UML based designs into a language understandable by reasoners in the form of logic facts, and secondly shows how to use the logic reasoners to infer the logical consequences of these logic facts. We have implemented the proposed translations in the form of a tool that can be used with any standard compliant UML modeling tool. Moreover, we authenticate the proposed approach by automatically validating hundreds of UML based designs that consist of thousands of model elements available in an online model repository. The proposed approach is limited in scope, but is fully automatic and does not require any expertise of logic languages from the user. We exemplify the proposed approach with two applications, which include the validation of domain specific languages and the validation of web service interfaces.
Resumo:
Linguistic modelling is a rather new branch of mathematics that is still undergoing rapid development. It is closely related to fuzzy set theory and fuzzy logic, but knowledge and experience from other fields of mathematics, as well as other fields of science including linguistics and behavioral sciences, is also necessary to build appropriate mathematical models. This topic has received considerable attention as it provides tools for mathematical representation of the most common means of human communication - natural language. Adding a natural language level to mathematical models can provide an interface between the mathematical representation of the modelled system and the user of the model - one that is sufficiently easy to use and understand, but yet conveys all the information necessary to avoid misinterpretations. It is, however, not a trivial task and the link between the linguistic and computational level of such models has to be established and maintained properly during the whole modelling process. In this thesis, we focus on the relationship between the linguistic and the mathematical level of decision support models. We discuss several important issues concerning the mathematical representation of meaning of linguistic expressions, their transformation into the language of mathematics and the retranslation of mathematical outputs back into natural language. In the first part of the thesis, our view of the linguistic modelling for decision support is presented and the main guidelines for building linguistic models for real-life decision support that are the basis of our modeling methodology are outlined. From the theoretical point of view, the issues of representation of meaning of linguistic terms, computations with these representations and the retranslation process back into the linguistic level (linguistic approximation) are studied in this part of the thesis. We focus on the reasonability of operations with the meanings of linguistic terms, the correspondence of the linguistic and mathematical level of the models and on proper presentation of appropriate outputs. We also discuss several issues concerning the ethical aspects of decision support - particularly the loss of meaning due to the transformation of mathematical outputs into natural language and the issue or responsibility for the final decisions. In the second part several case studies of real-life problems are presented. These provide background and necessary context and motivation for the mathematical results and models presented in this part. A linguistic decision support model for disaster management is presented here – formulated as a fuzzy linear programming problem and a heuristic solution to it is proposed. Uncertainty of outputs, expert knowledge concerning disaster response practice and the necessity of obtaining outputs that are easy to interpret (and available in very short time) are reflected in the design of the model. Saaty’s analytic hierarchy process (AHP) is considered in two case studies - first in the context of the evaluation of works of art, where a weak consistency condition is introduced and an adaptation of AHP for large matrices of preference intensities is presented. The second AHP case-study deals with the fuzzified version of AHP and its use for evaluation purposes – particularly the integration of peer-review into the evaluation of R&D outputs is considered. In the context of HR management, we present a fuzzy rule based evaluation model (academic faculty evaluation is considered) constructed to provide outputs that do not require linguistic approximation and are easily transformed into graphical information. This is achieved by designing a specific form of fuzzy inference. Finally the last case study is from the area of humanities - psychological diagnostics is considered and a linguistic fuzzy model for the interpretation of outputs of multidimensional questionnaires is suggested. The issue of the quality of data in mathematical classification models is also studied here. A modification of the receiver operating characteristics (ROC) method is presented to reflect variable quality of data instances in the validation set during classifier performance assessment. Twelve publications on which the author participated are appended as a third part of this thesis. These summarize the mathematical results and provide a closer insight into the issues of the practicalapplications that are considered in the second part of the thesis.
Resumo:
Tässä työssä esiteltiin Android laitteisto- ja sovellusalustana sekä kuvattiin, kuinka Android-pelisovelluksen käyttöliittymä voidaan pitää yhtenäisenä eri näyttölaitteilla skaalauskertoimien ja ankkuroinnin avulla. Toisena osiona työtä käsiteltiin yksinkertaisia tapoja, joilla pelisovelluksien suorituskykyä voidaan parantaa. Näistä tarkempiin mittauksiin valittiin matalatarkkuuksinen piirtopuskuri ja näkymättömissä olevien kappaleiden piilotus. Mittauksissa valitut menetelmät vaikuttivat demosovelluksen suorituskykyyn huomattavasti. Tässä työssä rajauduttiin Android-ohjelmointiin Java-kielellä ilman ulkoisia kirjastoja, jolloin työn tuloksia voi helposti hyödyntää mahdollisimman monessa eri käyttökohteessa.
Resumo:
Human activity recognition in everyday environments is a critical, but challenging task in Ambient Intelligence applications to achieve proper Ambient Assisted Living, and key challenges still remain to be dealt with to realize robust methods. One of the major limitations of the Ambient Intelligence systems today is the lack of semantic models of those activities on the environment, so that the system can recognize the speci c activity being performed by the user(s) and act accordingly. In this context, this thesis addresses the general problem of knowledge representation in Smart Spaces. The main objective is to develop knowledge-based models, equipped with semantics to learn, infer and monitor human behaviours in Smart Spaces. Moreover, it is easy to recognize that some aspects of this problem have a high degree of uncertainty, and therefore, the developed models must be equipped with mechanisms to manage this type of information. A fuzzy ontology and a semantic hybrid system are presented to allow modelling and recognition of a set of complex real-life scenarios where vagueness and uncertainty are inherent to the human nature of the users that perform it. The handling of uncertain, incomplete and vague data (i.e., missing sensor readings and activity execution variations, since human behaviour is non-deterministic) is approached for the rst time through a fuzzy ontology validated on real-time settings within a hybrid data-driven and knowledgebased architecture. The semantics of activities, sub-activities and real-time object interaction are taken into consideration. The proposed framework consists of two main modules: the low-level sub-activity recognizer and the high-level activity recognizer. The rst module detects sub-activities (i.e., actions or basic activities) that take input data directly from a depth sensor (Kinect). The main contribution of this thesis tackles the second component of the hybrid system, which lays on top of the previous one, in a superior level of abstraction, and acquires the input data from the rst module's output, and executes ontological inference to provide users, activities and their in uence in the environment, with semantics. This component is thus knowledge-based, and a fuzzy ontology was designed to model the high-level activities. Since activity recognition requires context-awareness and the ability to discriminate among activities in di erent environments, the semantic framework allows for modelling common-sense knowledge in the form of a rule-based system that supports expressions close to natural language in the form of fuzzy linguistic labels. The framework advantages have been evaluated with a challenging and new public dataset, CAD-120, achieving an accuracy of 90.1% and 91.1% respectively for low and high-level activities. This entails an improvement over both, entirely data-driven approaches, and merely ontology-based approaches. As an added value, for the system to be su ciently simple and exible to be managed by non-expert users, and thus, facilitate the transfer of research to industry, a development framework composed by a programming toolbox, a hybrid crisp and fuzzy architecture, and graphical models to represent and con gure human behaviour in Smart Spaces, were developed in order to provide the framework with more usability in the nal application. As a result, human behaviour recognition can help assisting people with special needs such as in healthcare, independent elderly living, in remote rehabilitation monitoring, industrial process guideline control, and many other cases. This thesis shows use cases in these areas.
Resumo:
Ydinvoimaloissa käytetään toiminnallisia syvyyssuuntaisia puolustustasoja ydinturvallisuuden varmistamiseksi. Puolustuksen viidennessä ja viimeisessä tasossa pyritään lieventämään vakavan onnettomuuden ympäristövaikutuksia ja väestöön kohdistuvaa säteilyaltistusta. Suojelutoimien onnistumisen kannalta on tärkeää pystyä arvioimaan etukäteen radioaktiivisen päästön suuruus ja ajankohta mahdollisimman tarkasti. Tässä diplomityössä on esitelty radioaktiivisen päästön suuruuteen ja ajankohtaan vaikuttavat ilmiöt sekä niihin liittyvät merkittävät epävarmuudet. Ydinvoimalaitosten turvallisuusjärjestelmien osalta tarkastelun kohteena ovat suomalaiset käynnissä olevat reaktorit Olkiluoto 1 & 2 sekä Loviisa 1 & 2. Kaikissa Suomen laitoksissa on käytössä vakavan onnettomuuden hallintaan soveltuvia järjestelmiä ja toimintoja. Työssä etsittiin tietoa eri maiden radioaktiivisen päästön ennustamiseen käytettävistä ohjelmista. Eri mailla on eri toimintaperiaatteilla ja laajuuksilla toimivia ohjelmia. Osassa työkaluja käytetään ennalta laskettuja tuloksia ja osassa onnettomuustilanteet lasketaan onnettomuuden aikana. Lisäksi lähivuosina Euroopassa on tavoitteena kehittää yhteistyömaille yhteisiä valmiuskäyttöön soveltuvia ohjelmia. Työssä kehitettiin uusi valmiustyökalu Säteilyturvakeskuksen käyttöön Microsoft Excelin VBAohjelmoinnin avulla. Valmiustyökalu hyödyntää etukäteen laskettujen todennäköisyyspohjaisten analyysien onnettomuussekvenssejä. Tällöin valmiustilanteessa laitoksen tilanteen kehittymistä on mahdollista arvioida suojarakennuksen toimintakyvyn perusteella. Valmiustyökalu pyrittiin kehittämään mahdollisimman helppokäyttöiseksi ja helposti päivitettäväksi.
Resumo:
New emerging technologies in the recent decade have brought new options to cross platform computer graphics development. This master thesis took a look for cross platform 3D graphics development possibilities. All platform dependent and non real time solutions were excluded. WebGL and two different OpenGL based solutions were assessed via demo application by using most recent development tools. In the results pros and cons of the each solutions were noted.