68 resultados para Wind forecasting


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The case company in this study is a large industrial engineering company whose business is largely based on delivering a wide-range of engineering projects. The aim of this study is to create and develop a fairly simple Excel-based tool for the sales department. The tool’s main function is to estimate and visualize the profitability of various small projects. The study also aims to find out other possible and more long-term solutions for tackling the problem in the future. The study is highly constructive and descriptive as it focuses on the development task and in the creation of a new operating model. The developed tool focuses on estimating the profitability of the small orders of the selected project portfolio currently on the bidding-phase (prospects) and will help the case company in the monthly reporting of sales figures. The tool will analyse the profitability of a certain project by calculating its fixed and variable costs, then further the gross margin and operating profit. The bidding phase of small project is a phase that has not been covered fully by the existing tools within the case company. The project portfolio tool can be taken into use immediately within the case company and it will provide fairly accurate estimate of the profitability figures of the recently sold small projects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is common knowledge of the world’s dependency on fossil fuel for energy, its unsustainability on the long run and the changing trend towards renewable energy as an alternative energy source. This aims to cut down greenhouse gas emission and its impact on the rate of ecological and climatic change. Quite remarkably, wind energy has been one of many focus areas of renewable energy sources and has attracted lots of investment and technological advancement. The objective of this research is to explore wind energy and its application in household heating. This research aims at applying experimental approach in real time to study and verify a virtually simulated wind powered hydraulic house heating system. The hardware components comprise of an integrated hydraulic pump, flow control valve, hydraulic fluid and other hydraulic components. The system design and control applies hardware in-the-loop (HIL) simulation setup. Output signal from the semi-empirical turbine modelling controls the integrated motor to generate flow. Throttling the volume flow creates pressure drop across the valve and subsequently thermal power in the system to be outputted using a heat exchanger. Maximum thermal power is achieved by regulating valve orifice to achieve optimum system parameter. Savonius rotor is preferred for its low inertia, high starting torque and ease of design and maintenance characteristics, but lags in power efficiency. A prototype turbine design is used; with power output in range of practical Savonius turbine. The physical mechanism of the prototype turbine’s augmentation design is not known and will not be a focus in this study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis introduces heat demand forecasting models which are generated by using data mining algorithms. The forecast spans one full day and this forecast can be used in regulating heat consumption of buildings. For training the data mining models, two years of heat consumption data from a case building and weather measurement data from Finnish Meteorological Institute are used. The thesis utilizes Microsoft SQL Server Analysis Services data mining tools in generating the data mining models and CRISP-DM process framework to implement the research. Results show that the built models can predict heat demand at best with mean average percentage errors of 3.8% for 24-h profile and 5.9% for full day. A deployment model for integrating the generated data mining models into an existing building energy management system is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Already one-third of the human population uses social media on a daily basis. The biggest social networking site Facebook has over billion monthly users. As a result, social media services are now recording unprecedented amount of data on human behavior. The phenomenon has certainly caught the attention of scholars, businesses and governments alike. Organizations around the globe are trying to explore new ways to benefit from the massive databases. One emerging field of research is the use of social media in forecasting. The goal is to use data gathered from online services to predict offline phenomena. Predicting the results of elections is a prominent example of forecasting with social media, but regardless of the numerous attempts, no reliable technique has been established. The objective of the research is to analyze how accurately the results of parliament elections can be forecasted using social media. The research examines whether Facebook “likes” can be effectively used for predicting the outcome of the Finnish parliament elections that took place in April 2015. First a tool for gathering data from Facebook was created. Then the data was used to create an electoral forecast. Finally, the forecast was compared with the official results of the elections. The data used in the research was gathered from the Facebook walls of all the candidates that were running for the parliament elections and had a valid Facebook page. The final sample represents 1131 candidates and over 750000 Facebook “likes”. The results indicate that creating a forecast solely based on Facebook “likes” is not accurate. The forecast model predicted very dramatic changes to the Finnish political landscape while the official results of the elections were rather moderate. However, a clear statistical relationship between “likes” and votes was discovered. In conclusion, it is apparent that citizens and other key actors of the society are using social media in an increasing rate. However, the volume of the data does not directly increase the quality of the forecast. In addition, the study faced several other limitations that should be addressed in future research. Nonetheless, discovering the positive correlation between “likes” and votes is valuable information that can be used in future studies. Finally, it is evident that Facebook “likes” are not accurate enough and a meaningful forecast would require additional parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wind power is a rapidly developing, low-emission form of energy production. In Fin-land, the official objective is to increase wind power capacity from the current 1 005 MW up to 3 500–4 000 MW by 2025. By the end of April 2015, the total capacity of all wind power project being planned in Finland had surpassed 11 000 MW. As the amount of projects in Finland is record high, an increasing amount of infrastructure is also being planned and constructed. Traditionally, these planning operations are conducted using manual and labor-intensive work methods that are prone to subjectivity. This study introduces a GIS-based methodology for determining optimal paths to sup-port the planning of onshore wind park infrastructure alignment in Nordanå-Lövböle wind park located on the island of Kemiönsaari in Southwest Finland. The presented methodology utilizes a least-cost path (LCP) algorithm for searching of optimal paths within a high resolution real-world terrain dataset derived from airborne lidar scannings. In addition, planning data is used to provide a realistic planning framework for the anal-ysis. In order to produce realistic results, the physiographic and planning datasets are standardized and weighted according to qualitative suitability assessments by utilizing methods and practices offered by multi-criteria evaluation (MCE). The results are pre-sented as scenarios to correspond various different planning objectives. Finally, the methodology is documented by using tools of Business Process Management (BPM). The results show that the presented methodology can be effectively used to search and identify extensive, 20 to 35 kilometers long networks of paths that correspond to certain optimization objectives in the study area. The utilization of high-resolution terrain data produces a more objective and more detailed path alignment plan. This study demon-strates that the presented methodology can be practically applied to support a wind power infrastructure alignment planning process. The six-phase structure of the method-ology allows straightforward incorporation of different optimization objectives. The methodology responds well to combining quantitative and qualitative data. Additional-ly, the careful documentation presents an example of how the methodology can be eval-uated and developed as a business process. This thesis also shows that more emphasis on the research of algorithm-based, more objective methods for the planning of infrastruc-ture alignment is desirable, as technological development has only recently started to realize the potential of these computational methods.