63 resultados para Transparent oxides
Resumo:
The pressure has grown to develop cost-effective emission reduction strategies in the Baltic Sea. The forthcoming stringent regulations of the International Maritime Organization for reducing harmful emissions of shipping in the Baltic Sea are causing increasing expenses for the operators. A market-based attitude towards pricing of economic incentives could be seen as a new approach for a successful application for the additional emission reduction of nitrogen oxides (NOx). In this study the aim is to understand the phenomenon of environmentally differentiated port fees and its effects on shipping companies’ emission reduction investments. The goal is to examine empirically the real-life effects of the possible environmental differentiated port fee system and the effect of environmentally differentiated port fees on NOx reduction investments in the Baltic Sea. The research approach of this study is nomothetical. In this study research questions are answered by analyzing the broad database of the Baltic Sea fleet. Also the framework of theory is confirmed and plays an important role in analyzing the research problem. Existing investment costs of NOx emission reduction technology to ship owners are estimated and compared to investment costs with granted discounts added to the cash flows. The statistical analysis in this study is descriptive. The major statistic examination of this study is the calculation of the net present values of investments with different port fee scenarios. This is done to investigate if the NOx technology investments could be economically reasonable. Based on calculations it is clear that the effect of environmentally differentiated port fees is not adequate to compensate the total investment costs for NOx reduction. If the investment decision is made only with profitability considerations, sources will prefer to emission abatement as long as incomes from the given subsidy exceeds their abatement costs. Despite of the results, evidence was found that shipping companies are nevertheless willing to invest on voluntary emission abatement technology. In that case, investment decision could be made with criteria of, for example, sustainable strategy or brand image. Combined fairway and port fee system or governmental regulations and recommendation could also function as additional incentives to compensate the investment costs. Also, the results imply that the use of NPV is not necessarily the best method to evaluate environmental investments. If the calculations would be done with more environmental methods the results would probably be different.
Resumo:
The steel industry produces, besides steel, also solid mineral by-products or slags, while it emits large quantities of carbon dioxide (CO2). Slags consist of various silicates and oxides which are formed in chemical reactions between the iron ore and the fluxing agents during the high temperature processing at the steel plant. Currently, these materials are recycled in the ironmaking processes, used as aggregates in construction, or landfilled as waste. The utilization rate of the steel slags can be increased by selectively extracting components from the mineral matrix. As an example, aqueous solutions of ammonium salts such as ammonium acetate, chloride and nitrate extract calcium quite selectively already at ambient temperature and pressure conditions. After the residual solids have been separated from the solution, calcium carbonate can be precipitated by feeding a CO2 flow through the solution. Precipitated calcium carbonate (PCC) is used in different applications as a filler material. Its largest consumer is the papermaking industry, which utilizes PCC because it enhances the optical properties of paper at a relatively low cost. Traditionally, PCC is manufactured from limestone, which is first calcined to calcium oxide, then slaked with water to calcium hydroxide and finally carbonated to PCC. This process emits large amounts of CO2, mainly because of the energy-intensive calcination step. This thesis presents research work on the scale-up of the above-mentioned ammonium salt based calcium extraction and carbonation method, named Slag2PCC. Extending the scope of the earlier studies, it is now shown that the parameters which mainly affect the calcium utilization efficiency are the solid-to-liquid ratio of steel slag and the ammonium salt solvent solution during extraction, the mean diameter of the slag particles, and the slag composition, especially the fractions of total calcium, silicon, vanadium and iron as well as the fraction of free calcium oxide. Regarding extraction kinetics, slag particle size, solid-to-liquid ratio and molar concentration of the solvent solution have the largest effect on the reaction rate. Solvent solution concentrations above 1 mol/L NH4Cl cause leaching of other elements besides calcium. Some of these such as iron and manganese result in solution coloring, which can be disadvantageous for the quality of the PCC product. Based on chemical composition analysis of the produced PCC samples, however, the product quality is mainly similar as in commercial products. Increasing the novelty of the work, other important parameters related to assessment of the PCC quality, such as particle size distribution and crystal morphology are studied as well. As in traditional PCC precipitation process, the ratio of calcium and carbonate ions controls the particle shape; a higher value for [Ca2+]/[CO32-] prefers precipitation of calcite polymorph, while vaterite forms when carbon species are present in excess. The third main polymorph, aragonite, is only formed at elevated temperatures, above 40-50 °C. In general, longer precipitation times cause transformation of vaterite to calcite or aragonite, but also result in particle agglomeration. The chemical equilibrium of ammonium and calcium ions and dissolved ammonia controlling the solution pH affects the particle sizes, too. Initial pH of 12-13 during the carbonation favors nonagglomerated particles with a diameter of 1 μm and smaller, while pH values of 9-10 generate more agglomerates of 10-20 μm. As a part of the research work, these findings are implemented in demonstrationscale experimental process setups. For the first time, the Slag2PCC technology is tested in scale of ~70 liters instead of laboratory scale only. Additionally, design of a setup of several hundreds of liters is discussed. For these purposes various process units such as inclined settlers and filters for solids separation, pumps and stirrers for material transfer and mixing as well as gas feeding equipment are dimensioned and developed. Overall emissions reduction of the current industrial processes and good product quality as the main targets, based on the performed partial life cycle assessment (LCA), it is most beneficial to utilize low concentration ammonium salt solutions for the Slag2PCC process. In this manner the post-treatment of the products does not require extensive use of washing and drying equipment, otherwise increasing the CO2 emissions of the process. The low solvent concentration Slag2PCC process causes negative CO2 emissions; thus, it can be seen as a carbon capture and utilization (CCU) method, which actually reduces the anthropogenic CO2 emissions compared to the alternative of not using the technology. Even if the amount of steel slag is too small for any substantial mitigation of global warming, the process can have both financial and environmental significance for individual steel manufacturers as a means to reduce the amounts of emitted CO2 and landfilled steel slag. Alternatively, it is possible to introduce the carbon dioxide directly into the mixture of steel slag and ammonium salt solution. The process would generate a 60-75% pure calcium carbonate mixture, the remaining 25-40% consisting of the residual steel slag. This calcium-rich material could be re-used in ironmaking as a fluxing agent instead of natural limestone. Even though this process option would require less process equipment compared to the Slag2PCC process, it still needs further studies regarding the practical usefulness of the products. Nevertheless, compared to several other CO2 emission reduction methods studied around the world, the within this thesis developed and studied processes have the advantage of existing markets for the produced materials, thus giving also a financial incentive for applying the technology in practice.
Resumo:
Microsoft System Center Configuration Manager is a systems management product for managing large groups of computers and/or mobile devices. It provides operating system deployment, software distribution, patch management, hardware & software inventory, remote control and many other features for the managed clients. This thesis focuses on researching whether this product is suitable for large, international organization with no previous, centralized solution for managing all such networked devices and detecting areas, where the system can be altered to achieve a more optimal management product from the company’s perspective. The results showed that the system is suitable for such organization if properly configured and clear and transparent line of communication between key IT personnel exists.