66 resultados para Towards Seamless Integration of Geoscience Models and Data


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to contribute to the current knowledge-based theory by focusing on a research gap that exists in the empirically proven determination of the simultaneous but differentiable effects of intellectual capital (IC) assets and knowledge management (KM) practices on organisational performance (OP). The analysis was built on the past research and theoreticised interactions between the latent constructs specified using the survey-based items that were measured from a sample of Finnish companies for IC and KM and the dependent construct for OP determined using information available from financial databases. Two widely used and commonly recommended measures in the literature on management science, i.e. the return on total assets (ROA) and the return on equity (ROE), were calculated for OP. Thus the investigation of the relationship between IC and KM impacting OP in relation to the hypotheses founded was possible to conduct using objectively derived performance indicators. Using financial OP measures also strengthened the dynamic features of data needed in analysing simultaneous and causal dependences between the modelled constructs specified using structural path models. The estimates were obtained for the parameters of structural path models using a partial least squares-based regression estimator. Results showed that the path dependencies between IC and OP or KM and OP were always insignificant when analysed separate to any other interactions or indirect effects caused by simultaneous modelling and regardless of the OP measure used that was either ROA or ROE. The dependency between the constructs for KM and IC appeared to be very strong and was always significant when modelled simultaneously with other possible interactions between the constructs and using either ROA or ROE to define OP. This study, however, did not find statistically unambiguous evidence for proving the hypothesised causal mediation effects suggesting, for instance, that the effects of KM practices on OP are mediated by the IC assets. Due to the fact that some indication about the fluctuations of causal effects was assessed, it was concluded that further studies are needed for verifying the fundamental and likely hidden causal effects between the constructs of interest. Therefore, it was also recommended that complementary modelling and data processing measures be conducted for elucidating whether the mediation effects occur between IC, KM and OP, the verification of which requires further investigations of measured items and can be build on the findings of this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most of the applications of airborne laser scanner data to forestry require that the point cloud be normalized, i.e., each point represents height from the ground instead of elevation. To normalize the point cloud, a digital terrain model (DTM), which is derived from the ground returns in the point cloud, is employed. Unfortunately, extracting accurate DTMs from airborne laser scanner data is a challenging task, especially in tropical forests where the canopy is normally very thick (partially closed), leading to a situation in which only a limited number of laser pulses reach the ground. Therefore, robust algorithms for extracting accurate DTMs in low-ground-point-densitysituations are needed in order to realize the full potential of airborne laser scanner data to forestry. The objective of this thesis is to develop algorithms for processing airborne laser scanner data in order to: (1) extract DTMs in demanding forest conditions (complex terrain and low number of ground points) for applications in forestry; (2) estimate canopy base height (CBH) for forest fire behavior modeling; and (3) assess the robustness of LiDAR-based high-resolution biomass estimation models against different field plot designs. Here, the aim is to find out if field plot data gathered by professional foresters can be combined with field plot data gathered by professionally trained community foresters and used in LiDAR-based high-resolution biomass estimation modeling without affecting prediction performance. The question of interest in this case is whether or not the local forest communities can achieve the level technical proficiency required for accurate forest monitoring. The algorithms for extracting DTMs from LiDAR point clouds presented in this thesis address the challenges of extracting DTMs in low-ground-point situations and in complex terrain while the algorithm for CBH estimation addresses the challenge of variations in the distribution of points in the LiDAR point cloud caused by things like variations in tree species and season of data acquisition. These algorithms are adaptive (with respect to point cloud characteristics) and exhibit a high degree of tolerance to variations in the density and distribution of points in the LiDAR point cloud. Results of comparison with existing DTM extraction algorithms showed that DTM extraction algorithms proposed in this thesis performed better with respect to accuracy of estimating tree heights from airborne laser scanner data. On the other hand, the proposed DTM extraction algorithms, being mostly based on trend surface interpolation, can not retain small artifacts in the terrain (e.g., bumps, small hills and depressions). Therefore, the DTMs generated by these algorithms are only suitable for forestry applications where the primary objective is to estimate tree heights from normalized airborne laser scanner data. On the other hand, the algorithm for estimating CBH proposed in this thesis is based on the idea of moving voxel in which gaps (openings in the canopy) which act as fuel breaks are located and their height is estimated. Test results showed a slight improvement in CBH estimation accuracy over existing CBH estimation methods which are based on height percentiles in the airborne laser scanner data. However, being based on the idea of moving voxel, this algorithm has one main advantage over existing CBH estimation methods in the context of forest fire modeling: it has great potential in providing information about vertical fuel continuity. This information can be used to create vertical fuel continuity maps which can provide more realistic information on the risk of crown fires compared to CBH.