83 resultados para RANDOM-FLIGHT CHAIN


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study is done to examine waste power plant’s optimal processing chain and it is important to consider from several points of view on why one option is better than the other. This is to insure that the right decision is made. Incineration of waste has devel-oped to be one decent option for waste disposal. There are several legislation matters and technical options to consider when starting up a waste power plant. From the tech-niques pretreatment, burner and flue gas cleaning are the biggest ones to consider. The treatment of incineration residues is important since it can be very harmful for the envi-ronment. The actual energy production from waste is not highly efficient and there are several harmful compounds emitted. Recycling of waste before incineration is not very typical and there are not many recycling options for materials that cannot be easily re-cycled to same product. Life cycle assessment is a good option for studying the envi-ronmental effect of the system. It has four phases that are part of the iterative study process. In this study the case environment is a waste power plant. The modeling of the plant is done with GaBi 6 software and the scope is from gate-to-grave. There are three different scenarios, from which the first and second are compared to each other to reach conclusions. Zero scenario is part of the study to demonstrate situation without the power plant. The power plant in this study is recycling some materials in scenario one and in scenario two even more materials and utilize the bottom ash more ways than one. The model has the substitutive processes for the materials when they are not recycled in the plant. The global warming potential results show that scenario one is the best option. The variable costs that have been considered tell the same result. The conclusion is that the waste power plant should not recycle more and utilize bottom ash in a number of ways. The area is not ready for that kind of utilization and production from recycled materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The subject of the thesis is automatic sentence compression with machine learning, so that the compressed sentences remain both grammatical and retain their essential meaning. There are multiple possible uses for the compression of natural language sentences. In this thesis the focus is generation of television program subtitles, which often are compressed version of the original script of the program. The main part of the thesis consists of machine learning experiments for automatic sentence compression using different approaches to the problem. The machine learning methods used for this work are linear-chain conditional random fields and support vector machines. Also we take a look which automatic text analysis methods provide useful features for the task. The data used for machine learning is supplied by Lingsoft Inc. and consists of subtitles in both compressed an uncompressed form. The models are compared to a baseline system and comparisons are made both automatically and also using human evaluation, because of the potentially subjective nature of the output. The best result is achieved using a CRF - sequence classification using a rich feature set. All text analysis methods help classification and most useful method is morphological analysis. Tutkielman aihe on suomenkielisten lauseiden automaattinen tiivistäminen koneellisesti, niin että lyhennetyt lauseet säilyttävät olennaisen informaationsa ja pysyvät kieliopillisina. Luonnollisen kielen lauseiden tiivistämiselle on monta käyttötarkoitusta, mutta tässä tutkielmassa aihetta lähestytään television ohjelmien tekstittämisen kautta, johon käytännössä kuuluu alkuperäisen tekstin lyhentäminen televisioruudulle paremmin sopivaksi. Tutkielmassa kokeillaan erilaisia koneoppimismenetelmiä tekstin automaatiseen lyhentämiseen ja tarkastellaan miten hyvin erilaiset luonnollisen kielen analyysimenetelmät tuottavat informaatiota, joka auttaa näitä menetelmiä lyhentämään lauseita. Lisäksi tarkastellaan minkälainen lähestymistapa tuottaa parhaan lopputuloksen. Käytetyt koneoppimismenetelmät ovat tukivektorikone ja lineaarisen sekvenssin mallinen CRF. Koneoppimisen tukena käytetään tekstityksiä niiden eri käsittelyvaiheissa, jotka on saatu Lingsoft OY:ltä. Luotuja malleja vertaillaan Lopulta mallien lopputuloksia evaluoidaan automaattisesti ja koska teksti lopputuksena on jossain määrin subjektiivinen myös ihmisarviointiin perustuen. Vertailukohtana toimii kirjallisuudesta poimittu menetelmä. Tutkielman tuloksena paras lopputulos saadaan aikaan käyttäen CRF sekvenssi-luokittelijaa laajalla piirrejoukolla. Kaikki kokeillut teksin analyysimenetelmät auttavat luokittelussa, joista tärkeimmän panoksen antaa morfologinen analyysi.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: