74 resultados para Permeability testing
Resumo:
Genetic counselling is a process in which the counsellee receives information and support concerning a genetic disease. This study examines the genetic counselling attached to genetic testing. Since genetic information is increasing alongside new testing technologies and the situations faced at the genetic clinics will therefore be more diverse, it is essential to assess what the expectations directed at genetic counselling are. It is also important to compare how they face the current counselling practices. In this study, the expectations, frames and practices of genetic counselling in different contexts of genetic testing were examined from three different perspectives: First, international guidelines covering genetic counselling were analysed to summarise what is expected from genetic counselling and to study how genetic information is framed. Second, national experts in European countries were asked about the regulations and practices of genetic counselling in their country. Finally, ten counsellees who had visited a genetic clinic were interviewed to analyse their expectations and experiences. The counsellees’ perspective was also approached through the background review of the previous studies on counsellees’ experiences. On the basis of the study, there are basic elements that are expected to be covered in genetic counselling from all perspectives. However, the views concerning bioethics, genetic exceptionalism and psychosocial aspects vary depending on the perspective and on the individual situation. Since there are sometimes more differences than similarities between genetic tests, no universal recommendations for counselling can be applied. The practices of genetic counselling should be defined situationally, emphasising the individual needs over the genes.
Resumo:
Cardiac troponin (cTn) I and T are the recommended biomarkers for the diagnosis and risk stratification of patients with suspected acute coronary syndrome (ACS), a major cause of cardiovascular death and disability worldwide. It has recently been demonstrated that cTn-specific autoantibodies (cTnAAb) can negatively interfere with cTnI detection by immunoassays to the extent that cTnAAb-positive patients may be falsely designated as cTnI-negative. The aim of this thesis was to develop and optimize immunoassays for the detection of both cTnI and cTnAAb, which would eventually enable exploring the clinical impact of these autoantibodies on cTnI testing and subsequent patient management. The extent of cTnAAb interference in different cTnI assay configurations and the molecular characteristics of cTnAAbs were investigated in publications I and II, respectively. The findings showed that cTnI midfragment targeting immunoassays used predominantly in clinical practice are affected by cTnAAb interference which can be circumvented by using a novel 3+1-type assay design with three capture antibodies against the N-terminus, midfragment and C-terminus and one tracer antibody against the C-terminus. The use of this assay configuration was further supported by the epitope specificity study, which showed that although the midfragment is most commonly targeted by cTnAAbs, the interference basically encompasses the whole molecule, and there may be remarkable individual variation at the affected sites. In publications III and IV, all the data obtained in previous studies were utilized to develop an improved version of an existing cTnAAb assay and a sensitive cTnI assay free of this specific analytical interference. The results of the thesis showed that approximately one in 10 patients with suspected ACS have detectable amounts of cTnAAbs in their circulation and that cTnAAbs can inhibit cTnI determination when targeted against the binding sites of assay antibodies used in its immunological detection. In the light of these observations, the risk of clinical misclassification caused by the presence of cTnAAbs remains a valid and reasonable concern. Because the titers, affinities and epitope specificities of cTnAAbs and the concentration of endogenous cTnI determine the final effect of circulating cTnAAbs, appropriately sized studies on their clinical significance are warranted. The new cTnI and cTnAAb assays could serve as analytical tools for establishing the impact of cTnAAbs on cTnI testing and also for unraveling the etiology of cTn-related autoimmune responses.
Resumo:
Electrokinetics has emerged as a potential technique for in situ soil remediation and especially unique because of the ability to work in low permeability soil. In electrokinetic remediation, non-polar contaminants like most organic compounds are transported primarily by electroosmosis, thus the process is effective only if the contaminants are soluble in pore fluid. Therefore, enhancement is needed to improve mobility of these hydrophobic compounds, which tend to adsorb strongly to the soil. On the other hand, as a novel and rapidly growing science, the applications of ultrasound in environmental technology hold a promising future. Compared to conventional methods, ultrasonication can bring several benefits such as environmental friendliness (no toxic chemical are used or produced), low cost, and compact instrumentation. It also can be applied onsite. Ultrasonic energy applied into contaminated soils can increase desorption and mobilization of contaminants and porosity and permeability of soil through developing of cavitation. The research investigated the coupling effect of the combination of these two techniques, electrokinetics and ultrasonication, in persistent organic pollutant removal from contaminated low permeability clayey soil (with kaolin as a model medium). The preliminary study checked feasibility of ultrasonic treatment of kaolin highly contaminated by persistent organic pollutants (POPs). The laboratory experiments were conducted in various conditions (moisture, frequency, power, duration time, initial concentration) to examine the effects of these parameters on the treatment process. Experimental results showed that ultrasonication has a potential to remove POPs, although the removal efficiencies were not high with short duration time. The study also suggested intermittent ultrasonication over longer time as an effective means to increase the removal efficiencies. Then, experiments were conducted to compare the performances among electrokinetic process alone and electrokinetic processes combined with surfactant addition and mainly with ultrasonication, in designed cylinders (with filtercloth separating central part and electrolyte parts) and in open pans. Combined electrokinetic and ultrasonic treatment did prove positive coupling effect compared to each single process alone, though the level of enhancement is not very significant. The assistance of ultrasound in electrokinetic remediation can help reduce POPs from clayey soil by improving the mobility of hydrophobic organic compounds and degrading these contaminants through pyrolysis and oxidation. Ultrasonication also sustains higher current and increases electroosmotic flow. Initial contaminant concentration is an essential input parameter that can affect the removal effectiveness.
Resumo:
In the latter days, human activities constantly increase greenhouse gases emissions in the atmosphere, which has a direct impact on a global climate warming. Finland as European Union member, developed national structural plan to promote renewable energy generation, pursuing the aspects of Directive 2009/28/EC and put it on the sharepoint. Finland is on a way of enhancing national security of energy supply, increasing diversity of the energy mix. There are plenty significant objectives to develop onshore and offshore wind energy generation in country for a next few decades, as well as another renewable energy sources. To predict the future changes, there are a lot of scenario methods developed and adapted to energy industry. The Master’s thesis explored “Fuzzy cognitive maps” approach in scenarios developing, which captures expert’s knowledge in a graphical manner and using these captures for a raw scenarios testing and refinement. There were prospects of Finnish wind energy development for the year of 2030 considered, with aid of FCM technique. Five positive raw scenarios were developed and three of them tested against integrated expert’s map of knowledge, using graphical simulation. The study provides robust scenarios out of the preliminary defined, as outcome, assuming the impact of results, taken after simulation. The thesis was conducted in such way, that there will be possibilities to use existing knowledge captures from expert panel, to test and deploy different sets of scenarios regarding to Finnish wind energy development.
Virtual Testing of Active Magnetic Bearing Systems based on Design Guidelines given by the Standards
Resumo:
Active Magnetic Bearings offer many advantages that have brought new applications to the industry. However, similarly to all new technology, active magnetic bearings also have downsides and one of those is the low standardization level. This thesis is studying mainly the ISO 14839 standard and more specifically the system verification methods. These verifying methods are conducted using a practical test with an existing active magnetic bearing system. The system is simulated with Matlab using rotor-bearing dynamics toolbox, but this study does not include the exact simulation code or a direct algebra calculation. However, this study provides the proof that standardized simulation methods can be applied in practical problems.
Resumo:
The objective of this Master´s Thesis was to conduct a wide scale preliminary survey regarding the package requirements of a cultured dairy package, and to compare the currently used material polystyrene to other suitable packaging materials. Polystyrene has a long history of use in dairy cups, but in recent years its price has increased significantly compared to other common packaging materials. The overall environmental effects of a package and a package material are today a part of designing a sustainable product life cycle. In addition, in certain contexts there has been discussion of the risks posed by styrene polymer for the environment and for humans. These risks are also discussed in this thesis. Polystyrene (PS) is still the most widely used material in dairy cups. In recent years, polypropylene (PP) cups have appeared in increasing numbers on market shelves. This study focuses on the differences of the suitable polymers and examines the suitability of alternative “suitable” polymers with regards to dairy packaging. Aside from focusing on the cup manufacturer, this thesis also examines its subject matter from the viewpoint of the dairy customer, as well as observing the concrete implications of material changes in the overall value chain. It was known in advance that material permeability would be one of the determining factors and that gas transmission testing would be a significant part of the thesis. Mechanical tests were the second part of the testing process, providing information regarding package strength and protectiveness during the package’s life cycle. Production efficiency, along with uninterrupted stable production, was another important factor that was taken into consideration. These two issues are sometimes neglected in similar contexts due to their self-evident nature. In addition, materials used in production may have a surprising significance to the production and efficiency. Consistent high quality is also partly based on material selection. All of the aforementioned factors have been documented and the results have been analyzed by the development team at Coveris Rigid Finland. Coveris is now calculating the total finance effects and capacities should the material changes be implemented in practice. There are many factors in favor of switching to polypropylene at the moment. The overall production costs, as well as the environmental effects of resin production are the primary influences for said switch from the converters’ perspective.
Resumo:
The aim of this study is to test the accrual-based model suggested by Dechow et al. (1995) in order to detect and compare earnings management practices in Finnish and French companies. Also the impact of financial crisis of 2008 on earnings management behavior in these countries is tested by dividing the whole time period of 2003-2012 into two sub-periods: pre-crisis (2003-2008) and post-crisis (2009-2012). Results support the idea that companies in both countries have significant earnings management practices. During the post-crisis period companies in Finland show income inflating practices, while in France the opposite tendency is noticed (income deflating) during the same period. Results of the assumption that managers in highly concentrated companies are engaged in income enhancing practices vary in two countries. While in Finland managers are trying to show better performance for bonuses or other contractual compensation motivations, in France they avoid paying dividends or high taxes.
Resumo:
Alzheimer’s disease (AD) is the most common form of dementia. Characteristic changes in an AD brain are the formation of β-amyloid protein (Aβ) plaques and neurofibrillary tangles, though other alterations in the brain have also been connected to AD. No cure is available for AD and it is one of the leading causes of death among the elderly in developed countries. Liposomes are biocompatible and biodegradable spherical phospholipid bilayer vesicles that can enclose various compounds. Several functional groups can be attached on the surface of liposomes in order to achieve long-circulating target-specific liposomes. Liposomes can be utilized as drug carriers and vehicles for imaging agents. Positron emission tomography (PET) is a non-invasive imaging method to study biological processes in living organisms. In this study using nucleophilic 18F-labeling synthesis, various synthesis approaches and leaving groups for novel PET imaging tracers have been developed to target AD pathology in the brain. The tracers were the thioflavin derivative [18F]flutemetamol, curcumin derivative [18F]treg-curcumin, and functionalized [18F]nanoliposomes, which all target Aβ in the AD brain. These tracers were evaluated using transgenic AD mouse models. In addition, 18F-labeling synthesis was developed for a tracer targeting the S1P3 receptor. The chosen 18F-fluorination strategy had an effect on the radiochemical yield and specific activity of the tracers. [18F]Treg-curcumin and functionalized [18F]nanoliposomes had low uptake in AD mouse brain, whereas [18F]flutemetamol exhibited the appropriate properties for preclinical Aβ-imaging. All of these tracers can be utilized in studies of the pathology and treatment of AD and related diseases.
Resumo:
Life cycle assessment (LCA) is one of the most established quantitative tools for environmental impact assessment of products. To be able to provide support to environmentally-aware decision makers on environmental impacts of biomass value-chains, the scope of LCA methodology needs to be augmented to cover landuse related environmental impacts. This dissertation focuses on analysing and discussing potential impact assessment methods, conceptual models and environmental indicators that have been proposed to be implemented into the LCA framework for impacts of land use. The applicability of proposed indicators and impact assessment frameworks is tested from practitioners' perspective, especially focusing on forest biomass value chains. The impacts of land use on biodiversity, resource depletion, climate change and other ecosystem services is analysed and discussed and the interplay in between value choices in LCA modelling and the decision-making situations to be supported is critically discussed. It was found out that land use impact indicators are necessary in LCA in highlighting differences in impacts from distinct land use classes. However, many open questions remain on certainty of highlighting actual impacts of land use, especially regarding impacts of managed forest land use on biodiversity and ecosystem services such as water regulation and purification. The climate impact of energy use of boreal stemwood was found to be higher in the short term and lower in the long-term in comparison with fossil fuels that emit identical amount of CO2 in combustion, due to changes implied to forest C stocks. The climate impacts of energy use of boreal stemwood were found to be higher than the previous estimates suggest on forest residues and stumps. The product lifetime was found to have much higher influence on the climate impacts of woodbased value chains than the origin of stemwood either from thinnings or final fellings. Climate neutrality seems to be likely only in the case when almost all the carbon of harvested wood is stored in long-lived wooden products. In the current form, the land use impacts cannot be modelled with a high degree of certainty nor communicated with adequate level of clarity to decision makers. The academia needs to keep on improving the modelling framework, and more importantly, clearly communicate to decision-makers the limited certainty on whether land-use intensive activities can help in meeting the strict mitigation targets we are globally facing.
Resumo:
Cardiac troponins (cTn) I and T are the current golden standard biochemical markers in the diagnosis and risk stratification of patients with suspected acute coronary syndrome. During the past few years, novel assays capable of detecting cTn‐concentrations in >50% of apparently healthy individuals have become readily available. With the emerging of these high sensitivity cTn assays, reductions in the assay specificity have caused elevations in the measured cTn levels that do not correlate with the clinical picture of the patient. The increased assay sensitivity may reveal that various analytical interference mechanisms exist. This doctoral thesis focused on developing nanoparticle‐assisted immunometric assays that could possibly be applied to an automated point‐of‐care system. The main objective was to develop minimally interference‐prone assays for cTnI by employing recombinant antibody fragments. Fast 5‐ and 15‐minute assays for cTnI and D‐dimer, a degradation product of fibrin, based on intrinsically fluorescent nanoparticles were introduced, thus highlighting the versatility of nanoparticles as universally applicable labels. The utilization of antibody fragments in different versions of the developed cTnI‐assay enabled decreases in the used antibody amounts without sacrificing assay sensitivity. In addition, the utilization of recombinant antibody fragments was shown to significantly decrease the measured cTnI concentrations in an apparently healthy population, as well as in samples containing known amounts of potentially interfering factors: triglycerides, bilirubin, rheumatoid factors, or human anti‐mouse antibodies. When determining the specificity of four commercially available antibodies for cTnI, two out of the four cross‐reacted with skeletal troponin I, but caused crossreactivity issues in patient samples only when paired together. In conclusion, the results of this thesis emphasize the importance of careful antibody selection when developing cTnI assays. The results with different recombinant antibody fragments suggest that the utilization of antibody fragments should strongly be encouraged in the immunoassay field, especially with analytes such as cTnI that require highly sensitive assay approaches.
Resumo:
Software is a key component in many of our devices and products that we use every day. Most customers demand not only that their devices should function as expected but also that the software should be of high quality, reliable, fault tolerant, efficient, etc. In short, it is not enough that a calculator gives the correct result of a calculation, we want the result instantly, in the right form, with minimal use of battery, etc. One of the key aspects for succeeding in today's industry is delivering high quality. In most software development projects, high-quality software is achieved by rigorous testing and good quality assurance practices. However, today, customers are asking for these high quality software products at an ever-increasing pace. This leaves the companies with less time for development. Software testing is an expensive activity, because it requires much manual work. Testing, debugging, and verification are estimated to consume 50 to 75 per cent of the total development cost of complex software projects. Further, the most expensive software defects are those which have to be fixed after the product is released. One of the main challenges in software development is reducing the associated cost and time of software testing without sacrificing the quality of the developed software. It is often not enough to only demonstrate that a piece of software is functioning correctly. Usually, many other aspects of the software, such as performance, security, scalability, usability, etc., need also to be verified. Testing these aspects of the software is traditionally referred to as nonfunctional testing. One of the major challenges with non-functional testing is that it is usually carried out at the end of the software development process when most of the functionality is implemented. This is due to the fact that non-functional aspects, such as performance or security, apply to the software as a whole. In this thesis, we study the use of model-based testing. We present approaches to automatically generate tests from behavioral models for solving some of these challenges. We show that model-based testing is not only applicable to functional testing but also to non-functional testing. In its simplest form, performance testing is performed by executing multiple test sequences at once while observing the software in terms of responsiveness and stability, rather than the output. The main contribution of the thesis is a coherent model-based testing approach for testing functional and performance related issues in software systems. We show how we go from system models, expressed in the Unified Modeling Language, to test cases and back to models again. The system requirements are traced throughout the entire testing process. Requirements traceability facilitates finding faults in the design and implementation of the software. In the research field of model-based testing, many new proposed approaches suffer from poor or the lack of tool support. Therefore, the second contribution of this thesis is proper tool support for the proposed approach that is integrated with leading industry tools. We o er independent tools, tools that are integrated with other industry leading tools, and complete tool-chains when necessary. Many model-based testing approaches proposed by the research community suffer from poor empirical validation in an industrial context. In order to demonstrate the applicability of our proposed approach, we apply our research to several systems, including industrial ones.
Resumo:
Point-of-care (POC) –diagnostics is a field with rapidly growing market share. As these applications become more widely used, there is an increasing pressure to improve their performance to match the one of a central laboratory tests. Lanthanide luminescence has been widely utilized in diagnostics because of the numerous advantages gained by the utilization of time-resolved or anti-Stokes detection. So far the use of lanthanide labels in POC has been scarce due to limitations set by the instrumentation required for their detection and the shortcomings, e.g. low brightness, of these labels. Along with the advances in the research of lanthanide luminescence, and in the field of semiconductors, these materials are becoming a feasible alternative for the signal generation also in the future POC assays. The aim of this thesis was to explore ways of utilizing time-resolved detection or anti-Stokes detection in POC applications. The long-lived fluorescence for the time-resolved measurement can be produced with lanthanide chelates. The ultraviolet (UV) excitation required by these chelates is cumbersome to produce with POC compatible fluorescence readers. In this thesis the use of a novel light-harvesting ligand was studied. This molecule can be used to excite Eu(III)-ions at wavelengths extending up to visible part of the spectrum. An enhancement solution based on this ligand showed a good performance in a proof-of-concept -bioaffinity assay and produced a bright signal upon 365 nm excitation thanks to the high molar absorptivity of the chelate. These features are crucial when developing miniaturized readers for the time-resolved detection of fluorescence. Upconverting phosphors (UCPs) were studied as an internal light source in glucose-sensing dry chemistry test strips and ways of utilizing their various emission wavelengths and near-infrared excitation were explored. The use of nanosized NaYF :Yb3+,Tm3+-particles enabled the replacement of an external UV-light source with a NIR-laser and gave an additional degree of freedom in the optical setup of the detector instrument. The new method enabled a blood glucose measurement with results comparable to a current standard method of measuring reflectance. Microsized visible emitting UCPs were used in a similar manner, but with a broad absorbing indicator compound filtering the excitation and emission wavelengths of the UCP. This approach resulted in a novel way of benefitting from the non-linear relationship between the excitation power and emission intensity of the UCPs, and enabled the amplification of the signal response from the indicator dye.
Resumo:
Diplomityön tavoitteena on löytää UPM Kymin paperikone 8:n ensimmäisen kuivatusryhmän johtoteloihin kulumis- ja korroosiokestävämpi materiaali ja pinnoite vallitsevaan olosuhteeseen. Teloihin muodostuu pistemäistä korroosiota ja korroosioalue on paikallinen. Korroosiota syntyy kuivatusviiran alueella, jossa ei ole paperirainaa. Työssä suoritetaan kuivatusosan olosuhdemittauksia ja tutkitaan niiden vaikutuksia korroosion muodostumiseen. Suoritettavat olosuhdemittaukset ovat huuvan ilmatase, paineen 0-taso sekä lämpötilat ja kosteudet eri huuvan osissa. Savukaasumittauksen avulla tutkitaan huuvan ilmankiertoa ensimmäisen kuivatusryhmän viiranjohtotelojen läheisyydessä. Kuivatusviiran ilmanläpäisymittauksen avulla saadaan tietoa viiran ilmanläpäisykyvystä. Hypoteesina viiran tukkeutuminen johtuu pölyävästä kuivaus-prosessista ja kosteudesta. SEM/EDS-alkuainemittauksen avulla pystytään analysoimaan korrosiivisia alkuaineita niin korroosioalueella kuin ympäristössä. Työn tutkimuksen perusteella korroosion muodostuminen aiheutuu tukkeutuneen viiran muodostamasta happipitoisuuseroalueesta. Viiran saostumat sisältävät korrosiivisia kemikaaleja, kuten kloridia, rikkiä ja mangaania. Nämä kiihdyttävät korroosiota happipuutosalueella. Huuvan olosuhdemittauksien perusteella huuvan paineen 0-taso on vino. Savukaasu- ja kosteusmittauksien avulla huomattiin kostean ilman jäävän telojen läheisyyteen. Työssä kehitettiin paineilmapuhdistin viiran reuna-alueen puhdistamiseen. Kaavattaviin telapositioihin valittiin kobolttikromiseostettu volframikarbidipinnoite PTFE -fluoripolymeeritiivistyksellä. Muihin telapositioihin valittiin ETFE –fluori-polymeeripinnoite korroosion ehkäisemiseksi. Pinnoitteiden ja paineilmapuhdistimen avulla telojen käyttöaika nousee nykyisestä kahdesta vuodesta tavoiteltuun 10 vuoteen.
Resumo:
Today, the user experience and usability in software application are becoming a major design issue due to the adaptation of many processes using new technologies. Therefore, the study of the user experience and usability might be included in every software development project and, thus, they should be tested to get traceable results. As a result of different testing methods to evaluate the concepts, a non-expert on the topic might have doubts on which option he/she should opt for and how to interpret the outcomes of the process. This work aims to create a process to ease the whole testing methodology based on the process created by Seffah et al. and a supporting software tool to follow the procedure of these testing methods for the user experience and usability.