89 resultados para molybdenum 100 target


Relevância:

20.00% 20.00%

Publicador:

Resumo:

PIXE (Particle Induce X-ray Emission spectrometry) was used for analysing stem bark and stem wood of Scots pine, Norway spruce and Silver birch. Thick samples were irradiated, in laboratory atmosphere, with 3 MeV protons and the beam current was measured indirectly using a photo multiplicator (PM) tube. Both point scans and bulk analyses were performed with the 1 mm diameter proton beam. In bulk analyses, whole bark and sectors of discs of the stem wood were dry ashed at 550 ˚C. The ashes were homogenised by shaking and prepared to target pellets for PIXE analyses. This procedure generated representative samples to be analysed, but the enrichment also enabled quantification of some additional trace elements. The ash contents obtained as a product of the sample preparation procedure also showed to be of great importance in the evaluation of results in environmental studies. Spot scans from the pith of pine wood outwards, showed clearly highest concentrations of manganese, calcium and zinc in the first spot irradiated, or 2-3 times higher than in the surrounding wood. For stem wood from the crown part of a pine this higher concentration level was found in the first four spots/mms, including the pith and the two following growth rings. Zinc showed increasing concentrations outwards in sapwood of the pine stem, with the over-all lowest concentrations in the inner half of the sapwood. This could indicate emigration of this element from sapwood being under transformation to heartwood. Point scans across sapwood of pine and spruce showed more distinct variations in concentrations relative to hearth wood. Higher concentrations of e.g. zinc, calcium and manganese were found in earlywood than in denser latewood. Very high concentrations of iron and copper were also seen for some earlywood increments. The ash content of stem bark is up to and order higher than for the stem wood. However, when the elemental concentration in ashes of bark and wood of the same disc were compared, these are very similar – this when trees are growing at spots with no anthropogenic contamination from the atmosphere. The largest difference was obtained for calcium which appeared at two times high concentrations in ashes of bark than in ashes of the wood (ratio of 2). Pine bark is often used in monitoring of atmospheric pollution, where concentrations in bark samples are compared. Here an alternative approach is suggested: Bark and the underlying stem wood of a pine trees are dry ashed and analysed. The elemental concentration in the bark ash is then compared to the concentration of the same element in the wood ash. Comparing bark to wood includes a normalisation for the varying availability of an element from the soil at different sites. When this comparison is done for the ashes of the materials, a normalisation is also obtained for the general and locally different enrichment of inorganic elements from wood to bark. Already a ratio >2 between the concentration in the bark ash and the concentration in the wood ash could indicate atmospheric pollution. For monitoring where bark is used, this way of “inwards” comparison is suggested - instead of comparing to results from analyses of bark from other trees (read reference areas), growing at sites with different soil and, locally, different climate conditions. This approach also enables evaluation of atmospheric pollution from sampling of only relative few individual trees –preferable during forest felling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth of breast cancer is regulated by hormones and growth factors. Recently, aberrant fibroblast growth factor (FGF) signalling has been strongly implicated in promoting the progression of breast cancer and is thought to have a role in the development of endocrine resistant disease. FGFs mediate their auto- and paracrine signals through binding to FGF receptors 1-4 (FGFR1-4) and their isoforms. Specific targets of FGFs in breast cancer cells and the differential role of FGFRs, however, are poorly described. FGF-8 is expressed at elevated levels in breast cancer, and it has been shown to act as an angiogenic, growth promoting factor in experimental models of breast cancer. Furthermore, it plays an important role in mediating androgen effects in prostate cancer and in some breast cancer cell lines. We aimed to study testosterone (Te) and FGF-8 regulated genes in Shionogi 115 (S115) breast cancer cells, characterise FGF-8 activated intracellular signalling pathways and clarify the role of FGFR1, -2 and -3 in these cells. Thrombospondin-1 (TSP-1), an endogenous inhibitor of angiogenesis, was recognised as a Te and FGF-8 regulated gene. Te repression of TSP-1 was androgen receptor (AR)-dependent. It required de novo protein synthesis, but it was independent of FGF-8 expression. FGF-8, in turn, downregulated TSP-1 transcription by activating the ERK and PI3K pathways, and the effect could be reversed by specific kinase inhibitors. Differential FGFR1-3 action was studied by silencing each receptor by shRNA expression in S115 cells. FGFR1 expression was a prerequisite for the growth of S115 tumours, whereas FGFR2 expression alone was not able to promote tumour growth. High FGFR1 expression led to a growth advantage that was associated with strong ERK activation, increased angiogenesis and reduced apoptosis, and all of these effects could be reversed by an FGFR inhibitor. Taken together, the results of this thesis show that FGF-8 and FGFRs contribute strongly to the regulation of the growth and angiogenesis of experimental breast cancer and support the evidence for FGF-FGFR signalling as one of the major players in breast cancers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soitinnus: lauluääni (sopraano), orkesteri.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Decreasing bone mass during aging predisposes to fractures and it is estimated that every second woman and one in five men will suffer osteoporotic fractures during their lifetime. Bone is an adaptive tissue undergoing continuous remodeling in response to physical and metabolic stimuli. Bone mass decreases through a net negative balance in the bone remodeling process of bone, in which the new bone incompletely replaces the resorbed bone mass. Bone resorption is carried out by the osteoclasts; the bone mineral is solubilized by acidification and the organic matrix is subsequently degraded by proteases. Several classes of drugs are available for prevention of osteoporotic fractures. They act by different mechanisms to increase bone mass, and some of them act mainly as antiresorptives by inhibition of osteoclast formation or their function. Optimally, a drug should act selectively on a specific process, since other processes affected usually result in adverse effects. The purpose of this study was to evaluate whether the osteoclastic vacuolar adenosine trisphosphatases (V-ATPase), which drives the solubilization of bone mineral, can be selectively inhibited despite its ubiquitous cellular functions. The V-ATPase is a multimeric protein composed of 13 subunits of which six possesses two or more isoforms. Selectivity for the osteoclastic V-ATPase could be provided if it has some structural uniqueness, such as a unique isoform combination. The a3 isoform of the 116kDa subunit is inevitable for bone resorption; however, it is also present in, and mainly limited to, the lysosomes of other cells. No evidence of a structural uniqueness of the osteoclastic V-ATPase compared to the lysosomal V-ATPase was found, although this can not yet be excluded. Thus, an inhibitor selective for the a3 isoform would target the lysosomal V-ATPase as well. However, the results suggest that selectivity for bone resorption over lysosomal function can be obtained by two other mechanisms, suggesting that isoform a3 is a valid target. The first is differential compensation; bone resorption depends on the high level of a3 expression, and is not compensated for by other isoforms, while the lower level of a3 in lysosomes of other cells may be partly compensated for. The second mechanism is because the bone resorption process itself is fundamentally different from lysosomal acidification because of the chemistry of bone dissolution and the anatomy of the resorbing osteoclast. By this mechanism, full inhibition of bone resorption is obtained with more than tenfold lower inhibitor concentration than those needed to fully inhibit lysosomal acidification. The two mechanisms are additive. Based on the results, we suggest that bone resorption can be selectively inhibited if VATPase inhibitors that are sufficiently selective for the a3 isoform over the other isoforms are developed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Batch chromatography is a widely used separation technique in a variety of fields meeting difficult separations. Several technologies for improving the performance of chromatography have been studied, including mixed-recycle steady state recycling (MR-SSR) chromatography. Design of MR-SSR has been commonly limited on 100 % purity constraint cases and empirical work. In this study a predictive design method was used to optimize feed pulse size and design a number of experimental MR-SSR separations for a solution of 20 % sulfuric acid and 100 g/L glucose. The design was under target product fraction purities of 98.7 % for H2SO4 and 95 % for glucose. The experiments indicate a maximum of 59 % increase in sulfuric acid productivity and 82 % increase for glucose when compared to corresponding batch separation. Eluent consumption was lowered by approximately 50 % using recycling chromatography. Within this study the target purities and yields set in design were not completely met, and further optimization of the process is deemed necessary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kuumahiertoprosessi on erittäin energiaintensiivinen prosessi, jonka energianominaiskulutus (EOK) on yleisesti 2–3.5 MWh/bdt. Noin 93 % energiasta kuluu jauhatuksessa jakautuen niin, että kaksi kolmasosaa kuluu päälinjan ja yksi kolmasosa rejektijauhatuksessa. Siksi myös tämän työn tavoite asetettiin vähentämään energian kulutusta juuri pää- ja rejektijauhatuksessa. Päälinjan jauhatuksessa tutkimuskohteiksi valittiin terityksen, tehojaon ja tuotantotason vaikutus EOK:een. Rejektijauhatuksen tehostamiseen pyrittiin yrittämällä vähentää rejektivirtaamaa painelajittelun keinoin. Koska TMP3 laitoksen jauhatuskapasiteettia on nostettu 25 %, tavoite oli nostaa päälinjan lajittelun kapasiteettia saman verran. Toisena tavoitteena oli pienentää rejektisuhdetta pää- ja rejektilajittelussa ja siten vähentää energiankulutusta rejektijauhatuksessa. Näitä tavoitteita lähestyttiin vaihtamalla päälinjan lajittimiin TamScreen-roottorit ja rejektilajittimiin Metso ProFoil-roottorit ja optimoimalla kuitufraktiot sihtirumpu- ja prosessiparametrimuutoksin. Syöttävällä terätyypillä pystyttiin vähentämään EOK:ta 100 kWh/bdt, mutta korkeampi jauhatusintensiteetti johti myös alempiin lujuusominaisuuksiin, korkeampaan ilmanläpäisyyn ja korkeampaan opasiteettiin. Myös tehojaolla voitiin vaikuttaa EOK:een. Kun ensimmäisen vaiheen jauhinta kuormitettiin enemmän, saavutettiin korkeimmillaan 70 kWh/bdt EOK-vähennys. Tuotantotason mittaamisongelmat heikensivät tuotantotasokoeajojen tuloksia siinä määrin, että näiden tulosten perusteella ei voida päätellä, onko EOK tuotantotasoriippuvainen vai ei. Päälinjan lajittelun kapasiteettia pystyttiin nostamaan TS-roottorilla vain 18 % jääden hieman tavoitetasosta. Rejektilajittelussa pystyttiin vähentämään rejektimäärää huomattavasti Metso ProFoil-roottorilla sekä sihtirumpu- ja prosessiparametrimuutoksin. Lajittamokehityksellä saavutettu EOK-vähennys arvioitiin massarejektisuhteen pienentymisen ja rejektijauhatuksessa käytetyn EOK:n avulla olevan noin 130 kWh/bdt. Yhteenvetona voidaan todeta, että tavoite 300 kWh/bdt EOK-vähennyksestä voidaan saavuttaa työssä käytetyillä tavoilla, mikäli niiden täysi potentiaali hyödynnetään tuotannossa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cells of epithelial origin, e.g. from breast and prostate cancers, effectively differentiate into complex multicellular structures when cultured in three-dimensions (3D) instead of conventional two-dimensional (2D) adherent surfaces. The spectrum of different organotypic morphologies is highly dependent on the culture environment that can be either non-adherent or scaffold-based. When embedded in physiological extracellular matrices (ECMs), such as laminin-rich basement membrane extracts, normal epithelial cells differentiate into acinar spheroids reminiscent of glandular ductal structures. Transformed cancer cells, in contrast, typically fail to undergo acinar morphogenic patterns, forming poorly differentiated or invasive multicellular structures. The 3D cancer spheroids are widely accepted to better recapitulate various tumorigenic processes and drug responses. So far, however, 3D models have been employed predominantly in the Academia, whereas the pharmaceutical industry has yet to adopt a more widely and routine use. This is mainly due to poor characterisation of cell models, lack of standardised workflows and high throughput cell culture platforms, and the availability of proper readout and quantification tools. In this thesis, a complete workflow has been established entailing well-characterised 3D cell culture models for prostate cancer, a standardised 3D cell culture routine based on high-throughput-ready platform, automated image acquisition with concomitant morphometric image analysis, and data visualisation, in order to enable large-scale high-content screens. Our integrated suite of software and statistical analysis tools were optimised and validated using a comprehensive panel of prostate cancer cell lines and 3D models. The tools quantify multiple key cancer-relevant morphological features, ranging from cancer cell invasion through multicellular differentiation to growth, and detect dynamic changes both in morphology and function, such as cell death and apoptosis, in response to experimental perturbations including RNA interference and small molecule inhibitors. Our panel of cell lines included many non-transformed and most currently available classic prostate cancer cell lines, which were characterised for their morphogenetic properties in 3D laminin-rich ECM. The phenotypes and gene expression profiles were evaluated concerning their relevance for pre-clinical drug discovery, disease modelling and basic research. In addition, a spontaneous model for invasive transformation was discovered, displaying a highdegree of epithelial plasticity. This plasticity is mediated by an abundant bioactive serum lipid, lysophosphatidic acid (LPA), and its receptor LPAR1. The invasive transformation was caused by abrupt cytoskeletal rearrangement through impaired G protein alpha 12/13 and RhoA/ROCK, and mediated by upregulated adenylyl cyclase/cyclic AMP (cAMP)/protein kinase A, and Rac/ PAK pathways. The spontaneous invasion model tangibly exemplifies the biological relevance of organotypic cell culture models. Overall, this thesis work underlines the power of novel morphometric screening tools in drug discovery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell division (mitosis) is a fundamental process in the life cycle of a cell. Equal distribution of chromosomes between the daughter cells is essential for the viability and well-being of an organism: loss of fidelity of cell division is a contributing factor in human cancer and also gives rise to miscarriages and genetic birth defects. For maintaining the proper chromosome number, a cell must carefully monitor cell division in order to detect and correct mistakes before they are translated into chromosomal imbalance. For this purpose an evolutionarily conserved mechanism termed the spindle assembly checkpoint (SAC) has evolved. The SAC comprises a complex network of proteins that relay and amplify mitosis-regulating signals created by assemblages called kinetochores (KTs). Importantly, minor defects in SAC signaling can cause loss or gain of individual chromosomes (aneuploidy) which promotes tumorigenesis while complete failure of SAC results in cell death. The latter event has raised interest in discovery of low molecular weight (LMW) compounds targeting the SAC that could be developed into new anti-cancer therapeutics. In this study, we performed a cell-based, phenotypic high-throughput screen (HTS) to identify novel LMW compounds that inhibit SAC function and result in loss of cancer cell viability. Altogether, we screened 65 000 compounds and identified eight that forced the cells prematurely out of mitosis. The flavonoids fisetin and eupatorin, as well as the synthetic compounds termed SACi2 and SACi4, were characterized in more detail utilizing versatile cell-based and biochemical assays. To identify the molecular targets of these SAC-suppressing compounds, we investigated the conditions in which SAC activity became abrogated. Eupatorin, SACi2 and SACi4 preferentially abolished the tensionsensitive arm of the SAC, whereas fisetin lowered also the SAC activity evoked by lack of attachments between microtubules (MTs) and KTs. Consistent with the abrogation of SAC in response to low tension, our data indicate that all four compounds inhibited the activity of Aurora B kinase. This essential mitotic protein is required for correction of erratic MT-KT attachments, normal SAC signaling and execution of cytokinesis. Furthermore, eupatorin, SACi2 and SACi4 also inhibited Aurora A kinase that controls the centrosome maturation and separation and formation of the mitotic spindle apparatus. In line with the established profound mitotic roles of Aurora kinases, these small compounds perturbed SAC function, caused spindle abnormalities, such as multi- and monopolarity and fragmentation of centrosomes, and resulted in polyploidy due to defects in cytokinesis. Moreover, the compounds dramatically reduced viability of cancer cells. Taken together, using a cell-based HTS we were able to identify new LMW compounds targeting the SAC. We demonstrated for the first time a novel function for flavonoids as cellular inhibitors of Aurora kinases. Collectively, our data support the concept that loss of mitotic fidelity due to a non-functional SAC can reduce the viability of cancer cells, a phenomenon that may possess therapeutic value and fuel development of new anti-cancer drugs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Turun seudun turvallisen ja kestävän liikkumisen suunnitelma on laadittu seudun kuntien ja Varsinais-Suomen ELY-keskuksen yhteistyönä. Suunnitelmassa on selvitetty liikenneturvallisuuden, liikkumisen, toimintaympäristön ja liikennejärjestelmän nykytilaa sekä kartoitettu liikenneturvallisuusongelmia erilaisten analyysien ja kyselyiden avulla. Nykytila-analyysin pohjalta on asetettu liikenneturvallisuustyön visio ja tavoitteet sekä määritetty toimenpide-ehdotukset. Tavoitteisiin pääsemistä tukevat liikenneympäristön parantamistoimenpiteiden ohjelma, liikkumisen ohjauksen toimintaohjelma sekä hallintokuntien liikenneturvallisuustyön toimenpiteistä kootut toimintasuunnitelmat. Onnettomuusanalyysin perusteella liikenneturvallisuuden tila oli Turun seudulla hieman koko Suomen keskiarvoa heikompi. Seudulla tapahtui vuosina 2001-2010 henkilövahinkoon johtaneita onnettomuuksia keskimäärin 132 / 100 000 asukasta, kun vastaava luku oli 126 koko maan osalta. Kuolemaan johtaneita onnettomuuksia tapahtui seudulla vähemmän, mutta loukkaantumiseen johtaneita onnettomuuksia koko maan keskiarvoa enemmän. Onnettomuuksissa kuoli tai loukkaantui koko maan keskiarvoa enemmän jalankulkijoita ja polkupyöräilijöitä. Lukumäärällisesti eniten onnettomuuksia tapahtui 18–19-vuotiaille, mutta henkilövahinkoon johtaneita onnettomuuksia tapahtui selvästi eniten 15–16-vuotiaille. Seudulla tapahtuneista liikenneonnettomuuksista aiheutui vuosittain keskimäärin 127,2 miljoonan euron kustannukset, josta kuntien osuus oli vuosittain noin 22,3 miljoonaa euroa. Asukkaille suunnatun kyselyn mukaan sekä työmatkat että lyhyet vapaa-ajan matkat tehtiin useimmiten henkilöautolla. Koululaisia pidettiin turvattomimpana tienkäyttäjäryhmänä, ja kävelyä sekä pyöräilyä turvattomimpina kulkutapoina. Välinpitämättömyyttä pidettiin merkittävimpänä syynä erilaisiin liikennerikkomuksiin ja tärkeimmäksi kehittämistarpeeksi nousi liikennekäyttäytyminen. Yhdyskuntarakenteen ja toimintaympäristön analyysin perusteella seudulla on hyvät edellytykset kestävien kulkumuotojen kuten joukkoliikenteen houkuttelevuuden lisäämiselle sekä kävelyn ja pyöräilyn verkoston kehittämiselle. Onnettomuusanalyysin ja valtakunnallisten tavoitteiden pohjalta Turun seudulle asetettiin liikenneturvallisuustyön tavoitteet. Tavoitelaskelman mukaan liikennekuolemien ja loukkaantuneiden määrä tulee puolittaa vuosien 2006-2010 keskiarvosta vuoteen 2020 mennessä. Tavoitteen mukaan liikenteessä kuolee enintään 6 (lähtötaso 12) ja loukkaantuu 236 (lähtötaso 471) vuonna 2020. Vaikutusarvion perusteella voidaan arvioida päästävän tavoitteeseen suunnitelmakauden aikana. Tavoitteiden saavuttaminen on kuitenkin haasteellista ja edellyttää tehokasta yhteistyötä eri tahojen välillä. Tavoitteeseen tulee pyrkiä laajaa keinovalikoimaa käyttäen. Suunnitelmatyön aikana aktivoitiin kuntien turvallisen ja kestävän liikkumisen ryhmät, joiden toiminnan tueksi laadittiin toimintasuunnitelmat sekä vuosikello työn eri vaiheista. Ryhmät vastaavat suunnitelman toteuttamisesta, toteutumisen seurannasta ja tarvittaessa päivittämisestä.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Streptococcus suis is an important pig pathogen but it is also zoonotic, i.e. capable of causing diseases in humans. Human S. suis infections are quite uncommon but potentially life-threatening and the pathogen is an emerging public health concern. This Gram-positive bacterium possesses a galabiose-specific (Galalpha1−4Gal) adhesion activity, which has been studied for over 20 years. P-fimbriated Escherichia coli−bacteria also possess a similar adhesin activity targeting the same disaccharide. The galabiose-specific adhesin of S. suis was identified by an affinity proteomics method. No function of the protein identified was formerly known and it was designated streptococcal adhesin P (SadP). The peptide sequence of SadP contains an LPXTG-motif and the protein was proven to be cell wall−anchored. SadP may be multimeric since in SDS-PAGE gel it formed a protein ladder starting from about 200 kDa. The identification was confirmed by producing knockout strains lacking functional adhesin, which had lost their ability to bind to galabiose. The adhesin gene was cloned in a bacterial expression host and properties of the recombinant adhesin were studied. The galabiose-binding properties of the recombinant protein were found to be consistent with previous results obtained studying whole bacterial cells. A live-bacteria application of surface plasmon resonance was set up, and various carbohydrate inhibitors of the galabiose-specific adhesins were studied with this assay. The potencies of the inhibitors were highly dependent on multivalency. Compared with P-fimbriated E. coli, lower concentrations of galabiose derivatives were needed to inhibit the adhesion of S. suis. Multivalent inhibitors of S. suis adhesion were found to be effective at low nanomolar concentrations. To specifically detect galabiose adhesin−expressing S. suis bacteria, a technique utilising magnetic glycoparticles and an ATP bioluminescence bacterial detection system was also developed. The identification and characterisation of the SadP adhesin give valuable information on the adhesion mechanisms of S. suis, and the results of this study may be helpful for the development of novel inhibitors and specific detection methods of this pathogen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Preparation of optically active compounds is of high importance in modern medicinal chemistry. Despite recent advances in the field of asymmetric synthesis, resolution of racemates still remains the most utilized way for preparation of single enantiomers in industrial scale due to its cost-efficiency and simplicity. Enzymatic kinetic resolution (KR) of racemates is a classical method for separation of enantiomers. One of its drawbacks is the limitation of target enantiomer yield to 50%. Dynamic Kinetic Resolution (DKR) allows to reach yields up to 100% by in situ racemization of the less reactive enantiomer. In the first part of this thesis, a number of half-sandwich ruthenium complexes were prepared and evaluated as catalysts for racemization of optically active secondary alcohols. A leading catalyst, Bn5CpRu(CO)2Cl, was identified. The catalyst discovered was extensively characterized by its application for DKR of a broad range of secondary alcohols in a wide range of reaction loadings (1 mmol – 1 mol). Cost-efficient chromatography-free procedure for preparation of this catalyst was developed. Further, detailed kinetic and mechanistic studies of the racemization reactions were performed. Comparison of racemization rates in the presence of Bn5CpRu(CO)2Cl and Ph5CpRu(CO)2Cl catalysts reveals that the performance of the catalytic system can be adjusted by matching of the electronic properties of the catalysts and the substrates. Moreover, dependence of the rate-limiting step from the electronic properties of the reagents was observed. Important conclusions about reaction mechanism were made. Finally, an alternative approach to DKR of amines based on space separated vessels was addressed. This procedure allows the combination of thermolabile enzyme with racemization catalysts active only at high temperatures.