58 resultados para hearth carbon blocks


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents a set of methods and models for estimation of iron and slag flows in the blast furnace hearth and taphole. The main focus was put on predicting taphole flow patterns and estimating the effects of various taphole conditions on the drainage behavior of the blast furnace hearth. All models were based on a general understanding of the typical tap cycle of an industrial blast furnace. Some of the models were evaluated on short-term process data from the reference furnace. A computational fluid dynamics (CFD) model was built and applied to simulate the complicated hearth flows and thus to predict the regions of the hearth exerted to erosion under various operating conditions. Key boundary variables of the CFD model were provided by a simplified drainage model based on the first principles. By examining the evolutions of liquid outflow rates measured from the furnace studied, the drainage model was improved to include the effects of taphole diameter and length. The estimated slag delays showed good agreement with the observed ones. The liquid flows in the taphole were further studied using two different models and the results of both models indicated that it is more likely that separated flow of iron and slag occurs in the taphole when the liquid outflow rates are comparable during tapping. The drainage process was simulated with an integrated model based on an overall balance analysis: The high in-furnace overpressure can compensate for the resistances induced by the liquid flows in the hearth and through the taphole. Finally, a recently developed multiphase CFD model including interfacial forces between immiscible liquids was developed and both the actual iron-slag system and a water-oil system in laboratory scale were simulated. The model was demonstrated to be a useful tool for simulating hearth flows for gaining understanding of the complex phenomena in the drainage of the blast furnace.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents a one-dimensional, semi-empirical dynamic model for the simulation and analysis of a calcium looping process for post-combustion CO2 capture. Reduction of greenhouse emissions from fossil fuel power production requires rapid actions including the development of efficient carbon capture and sequestration technologies. The development of new carbon capture technologies can be expedited by using modelling tools. Techno-economical evaluation of new capture processes can be done quickly and cost-effectively with computational models before building expensive pilot plants. Post-combustion calcium looping is a developing carbon capture process which utilizes fluidized bed technology with lime as a sorbent. The main objective of this work was to analyse the technological feasibility of the calcium looping process at different scales with a computational model. A one-dimensional dynamic model was applied to the calcium looping process, simulating the behaviour of the interconnected circulating fluidized bed reactors. The model incorporates fundamental mass and energy balance solvers to semi-empirical models describing solid behaviour in a circulating fluidized bed and chemical reactions occurring in the calcium loop. In addition, fluidized bed combustion, heat transfer and core-wall layer effects were modelled. The calcium looping model framework was successfully applied to a 30 kWth laboratory scale and a pilot scale unit 1.7 MWth and used to design a conceptual 250 MWth industrial scale unit. Valuable information was gathered from the behaviour of a small scale laboratory device. In addition, the interconnected behaviour of pilot plant reactors and the effect of solid fluidization on the thermal and carbon dioxide balances of the system were analysed. The scale-up study provided practical information on the thermal design of an industrial sized unit, selection of particle size and operability in different load scenarios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The iron and steelmaking industry is among the major contributors to the anthropogenic emissions of carbon dioxide in the world. The rising levels of CO2 in the atmosphere and the global concern about the greenhouse effect and climate change have brought about considerable investigations on how to reduce the energy intensity and CO2 emissions of this industrial sector. In this thesis the problem is tackled by mathematical modeling and optimization using three different approaches. The possibility to use biomass in the integrated steel plant, particularly as an auxiliary reductant in the blast furnace, is investigated. By pre-processing the biomass its heating value and carbon content can be increased at the same time as the oxygen content is decreased. As the compression strength of the preprocessed biomass is lower than that of coke, it is not suitable for replacing a major part of the coke in the blast furnace burden. Therefore the biomass is assumed to be injected at the tuyere level of the blast furnace. Carbon capture and storage is, nowadays, mostly associated with power plants but it can also be used to reduce the CO2 emissions of an integrated steel plant. In the case of a blast furnace, the effect of CCS can be further increased by recycling the carbon dioxide stripped top gas back into the process. However, this affects the economy of the integrated steel plant, as the amount of top gases available, e.g., for power and heat production is decreased. High quality raw materials are a prerequisite for smooth blast furnace operation. High quality coal is especially needed to produce coke with sufficient properties to ensure proper gas permeability and smooth burden descent. Lower quality coals as well as natural gas, which some countries have in great volumes, can be utilized with various direct and smelting reduction processes. The DRI produced with a direct reduction process can be utilized as a feed material for blast furnace, basic oxygen furnace or electric arc furnace. The liquid hot metal from a smelting reduction process can in turn be used in basic oxygen furnace or electric arc furnace. The unit sizes and investment costs of an alternative ironmaking process are also lower than those of a blast furnace. In this study, the economy of an integrated steel plant is investigated by simulation and optimization. The studied system consists of linearly described unit processes from coke plant to steel making units, with a more detailed thermodynamical model of the blast furnace. The results from the blast furnace operation with biomass injection revealed the importance of proper pre-processing of the raw biomass as the composition of the biomass as well as the heating value and the yield are all affected by the pyrolysis temperature. As for recycling of CO2 stripped blast furnace top gas, substantial reductions in the emission rates are achieved if the stripped CO2 can be stored. However, the optimal recycling degree together with other operation conditions is heavily dependent on the cost structure of CO2 emissions and stripping/storage. The economical feasibility related to the use of DRI in the blast furnace depends on the price ratio between the DRI pellets and the BF pellets. The high amount of energy needed in the rotary hearth furnace to reduce the iron ore leads to increased CO2 emissions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Demand for increased energy efficiency has put an immense need for novel energy efficient systems. Electrical machines are considered as a much matured technology. Further improvement in this technology needs of finding new material to incorporate in electrical machines. Progress of carbon nanotubes research over the latest decade can open a new horizon in this aspect. Commonly known as ‘magic material’, carbon nanotubes (CNTs) have promising material properties that can change considerably the course of electrical machine design. It is believed that winding material based on carbon nanotubes create the biggest hope for a giant leap of modern technology and energy efficient systems. Though carbon nanotubes (CNTs) have shown amazing properties theoretically and practically during the latest 20 years, to the best knowledge of the author, no research has been carried out to find the future possibilities of utilizing carbon nanotubes as conductors in rotating electrical machines. In this thesis, the possibilities of utilizing carbon nanotubes in electrical machines have been studied. The design changes of electrical machine upon using carbon nanotubes instead of copper have been discussed vividly. A roadmap for this carbon nanotube winding machine has been discussed from synthesis, manufacturing and operational points of view.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measuring protein biomarkers from sample matrix, such as plasma, is one of the basic tasks in clinical diagnostics. Bioanalytical assays used for the measuring should be able to measure proteins with high sensitivity and specificity. Furthermore, multiplexing capability would also be advantageous. To ensure the utility of the diagnostic test in point-of-care setting, additional requirements such as short turn-around times, ease-ofuse and low costs need to be met. On the other hand, enhancement of assay sensitivity could enable exploiting novel biomarkers, which are present in very low concentrations and which the current immunoassays are unable to measure. Furthermore, highly sensitive assays could enable the use of minimally invasive sampling. In the development of high-sensitivity assays the label technology and affinity binders are in pivotal role. Additionally, innovative assay designs contribute to the obtained sensitivity and other characteristics of the assay as well as its applicability. The aim of this thesis was to study the impact of assay components on the performance of both homogeneous and heterogeneous assays. Applicability of two different lanthanide-based label technologies, upconverting nanoparticles and switchable lanthanide luminescence, to protein detection was explored. Moreover, the potential of recombinant antibodies and aptamers as alternative affinity binders were evaluated. Additionally, alternative conjugation chemistries for production of the labeled binders were studied. Different assay concepts were also evaluated with respect to their applicability to point-of-care testing, which requires simple yet sensitive methods. The applicability of upconverting nanoparticles to the simultaneous quantitative measurement of multiple analytes using imaging-based detection was demonstrated. Additionally, the required instrumentation was relatively simple and inexpensive compared to other luminescent lanthanide-based labels requiring time-resolved measurement. The developed homogeneous assays exploiting switchable lanthanide luminescence were rapid and simple to perform and thus applicable even to point-ofcare testing. The sensitivities of the homogeneous assays were in the picomolar range, which are still inadequate for some analytes, such as cardiac troponins, requiring ultralow limits of detection. For most analytes, however, the obtained limits of detection were sufficient. The use of recombinant antibody fragments and aptamers as binders allowed site-specific and controlled covalent conjugation to construct labeled binders reproducibly either by using chemical modification or recombinant technology. Luminescent lanthanide labels were shown to be widely applicable for protein detection in various assay setups and to contribute assay sensitivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In literature CO 2 liquidization is well studied with steady state modeling. Steady state modeling gives an overview of the process but it doesn’t give information about process behavior during transients. In this master’s thesis three dynamic models of CO2 liquidization were made and tested. Models were straight multi-stage compression model and two compression liquid pumping models, one with and one without cold energy recovery. Models were made with Apros software, models were also used to verify that Apros is capable to model phase changes and over critical state of CO 2. Models were verified against compressor manufacturer’s data and simulation results presented in literature. From the models made in this thesis, straight compression model was found to be the most energy efficient and fastest to react to transients. Also Apros was found to be capable tool for dynamic liquidization modeling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon dioxide is regarded, nowadays, as a primary anthropogenic greenhouse gas leading to global warming. Hence, chemical fixation of CO2 has attracted much attention as a possible way to manufacture useful chemicals. One of the most interesting approaches of CO2 transformations is the synthesis of organic carbonates. Since conventional production technologies of these compounds involve poisonous phosgene and carbon monoxide, there is a need to develop novel synthetic methods that would better match the principles of "Green Chemistry" towards protection of the environment and human health. Over the years, synthesis of dimethyl carbonate was under intensive investigation in the academia and industry. Therefore, this study was entirely directed towards equally important homologue of carbonic esters family namely diethyl carbonate (DEC). Novel synthesis method of DEC starting from ethanol and CO2 over heterogeneous catalysts based on ceria (CeO2) was studied in the batch reactor. However, the plausible drawback of the reaction is thermodynamic limitations. The calculated values revealed that the reaction is exothermic (ΔrHØ298K = ─ 16.6 J/ ) and does not occur spontaneously at rooms temperature (ΔrGØ 298K = 35.85 kJ/mol). Moreover, co-produced water easily shifts the reaction equilibrium towards reactants excluding achievement of high yields of the carbonate. Therefore, in-situ dehydration has been applied using butylene oxide as a chemical water trap. A 9-fold enhancement in the amount of DEC was observed upon introduction of butylene oxide to the reaction media in comparison to the synthetic method without any water removal. This result confirms that reaction equilibrium was shifted in favour of the desired product and thermodynamic boundaries of the reaction were suppressed by using butylene oxide as a water scavenger. In order to obtain insight into the reaction network, the kinetic experiments were performed over commercial cerium oxide. On the basis of the selectivity/conversion profile it could be concluded that the one-pot synthesis of diethyl carbonate from ethanol, CO2 and butylene oxide occurs via a consecutive route involving cyclic carbonate as an intermediate. Since commercial cerium oxide suffers from the deactivation problems already after first reaction cycle, in-house CeO2 was prepared applying room temperature precipitation technique. Variation of the synthesis parameters such as synthesis time, calcination temperature and pH of the reaction solution turned to have considerable influence on the physico-chemical and catalytic properties of CeO2. The increase of the synthesis time resulted in high specific surface area of cerium oxide and catalyst prepared within 50 h exhibited the highest amount of basic sites on its surface. Furthermore, synthesis under pH 11 yielded cerium oxide with the highest specific surface area, 139 m2/g, among all prepared catalysts. Moreover, CeO2─pH11 catalyst demonstrated the best catalytic activity and 2 mmol of DEC was produced at 180 oC and 9 MPa of the final reaction pressure. In addition, ceria-supported onto high specific surface area silicas MCM-41, SBA-15 and silica gel were synthesized and tested for the first time as catalysts in the synthesis of DEC. Deposition of cerium oxide on MCM-41 and SiO2 supports resulted in a substantial increase of the alkalinity of the carrier materials. Hexagonal SBA-15 modified with 20 wt % of ceria exhibited the second highest basicity in the series of supported catalysts. Evaluation of the catalytic activity of ceria-supported catalysts showed that reaction carried out over 20 wt % CeO2-SBA-15 generated the highest amount of DEC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrical machines have significant improvement potential. Nevertheless, the field is characterized by incremental innovations. Admittedly, steady improvement has been achieved, but no breakthrough development. Radical development in the field would require the introduction of new elements, such that may change the whole electrical machine industry system. Recent technological advancements in nanomaterials have opened up new horizons for the macroscopic application of carbon nanotube (CNT) fibres. With values of 100 MS/m measured on individual CNTs, CNT fibre materials hold promise for conductivities far beyond those of metals. Highly conductive, lightweight and strong CNT yarn is finally within reach; it could replace copper as a potentially better winding material. Although not yet providing low resistivity, the newest CNT yarn offers attractive perspectives for accelerated efficiency improvement of electrical machines. In this article, the potential for using new CNT materials to replace copper in machine windings is introduced. It does so, firstly, by describing the environment for a change that could revolutionize the industry and, secondly, by presenting the breakthrough results of a prototype construction. In the test motor, which is to our knowledge the first in its kind, the presently most electrically conductive carbon nanotube yarn replaces usual copper in the windings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lappeenranta University of Technology School of Technology Technical Physics Evgenii Zhukov MAGNETIZATION STUDIES OF POLYSTYRENE/MULTIWALL CARBON NANOTUBE COMPOSITE FILMS Master’s thesis 2015 55 pages, 41 pictures, 9 Tables. Examiners: Professor Erkki Lähderanta D.Sc. Ivan Zakharchuk Keywords: polystyrene, multi-walled carbon nanotubes, MWCNT, composite, magnetization, SQUID. In this thesis magnetic properties of polystyrene/multiwall carbon nanotube (MWCNT) composites are investigated with Quantum Design SQUID magnetometer (MPMS XL). The surface of the composite films is studied via BRUKER Multimode 8 Atomic Force Microscope, as well. The polystyrene/MWCNT composites have been prepared by the group of professor Okotrub (Physics Chemistry of Nanomaterials laboratory, Nikolaev Institute of Inorganic Chemistry, Russia). The composite films have been prepared by solution processing and stretching method. The approximate length and inner diameter of the MWCNTs used in fabrication are 260 μm and 10 nm, respectively. The content of MWCNTs is 1 and 2.5 contents percent (wt%) for studied samples. The stretching of the samples is 30% for samples with 1 and 2.5 wt% content, and one sample with 1 wt% loading of MWCNTs is 100% stretched. MWCNTs aligned perpendicular to a silicon substrate are used as a reference sample. The magnetization field dependencies of the samples exhibit hysteresis behavior. The values of saturation magnetization of composite films are much less compared to that of the reference sample. The saturation magnetization coercitivity field value drops with decrease of MWCNT content. At high magnetic fields strong presence of diamagnetism is observed. Measurements in magnetic field parallel and perpendicular to the composite plate display anisotropy with respect to the direction of stretching. Temperature dependences of magnetization for all samples display difference between zero-field cooled and field-cooled curves of magnetization. This divergence confirms the presence of magnetic interactions in the material. The atomic force microscopy study of the composites’ surfaces revealed that they are relatively smooth and the nanotubes are aligned with the axis of stretching to some extent. 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is done as a part of the NEOCARBON project. The aim of NEOCARBON project is to study a fully renewable energy system utilizing Power-to-Gas or Power-to-Liquid technology for energy storage. Power-to-Gas consists of two main operations: Hydrogen production via electrolysis and methane production via methanation. Methanation requires carbon dioxide and hydrogen as a raw material. This thesis studies the potential carbon dioxide sources within Finland. The different sources are ranked using the cost and energy penalty of the carbon capture, carbon biogenity and compatibility with Power-to-Gas. It can be concluded that in Finland there exists enough CO2 point sources to provide national PtG system with sufficient amounts of carbon. Pulp and paper industry is single largest producer of biogenic CO2 in Finland. It is possible to obtain single unit capable of grid balancing operations and energy transformations via Power-to-Gas and Gas-to-Power by coupling biogas plants with biomethanation and CHP units.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Industrial production of pulp and paper is an intensive consumer of energy, natural resources, and chemicals that result in a big carbon footprint of the final product. At present companies and industries aspire to calculate their gas emissions into the atmosphere in order to afterwards reduce atmospheric contamination. One of the approaches allowing to increase carbon burden from the pulp and paper manufacture is paper recycling. The general purpose of the current paper is to establish methods of quantifying and minimizing the carbon footprint of paper. The first target of this research is to derive a mathematical relationship between virgin fibre requirements with respect to the amount of recycled paper used in the pulp. One more purpose is to establish a model to be used to clarify the contribution of recycling and transportation to decreasing carbon dioxide emissions. For this study sensitivity analysis is used to investigate the robustness of obtained results. The results of the present study show that an increasing of recycling rate does not always lead to minimizing the carbon footprint. Additionally, we derived that transportation of waste paper throughout distances longer than 5800 km has no sense because the use of that paper will only increase carbon dioxide emissions and it is better to reject recycling at all. Finally, we designed the model for organization of a new supply chain of paper product to a customer. The models were implemented as reusable MATLAB frameworks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this thesis research work focused on the carbonate precipitation of magnesium using magnesium hydroxide Mg(OH)2 and carbon dioxide (CO2) gas at ambient temperature and pressure. The rate of dissolution of Mg(OH)2 and precipitation kinetics were investigated under different operating conditions. The conductivity and pH of the solution were inline monitored by a Consort meter and the solid samples gotten from the precipitation reaction were analysed by a laser diffraction analyzer Malvern Mastersizer to obtain particle size distributions (PSD) of crystal samples. Also the Mg2+ concentration profiles were determined from the liquid phase of the precipitate by ion chromatography (IC) analysis. Crystal morphology of the obtained precipitates were also investigated and discussed in this work. For the carbonation reaction of magnesium hydroxide in the present work, it was found that magnesium carbonate trihydrate (nesquehonite) was the main product and its formation occurred at a pH of around 7-8. The stirrer speed has a significant effect on the dissolution rate of Mg(OH)2. The highest obtained Mg2+ concentration level was 0.424 mol L-l for the 470 rpm and 0.387 mol L-1 for the 560 rpm which corresponded to the processing time of 45 mins and 40 mins respectively. The particle size distribution shows that the average particle size keeps increasing during the reaction as the CO2 is been fed to the system. The carbonation process is kinetically favored and simple as nesquehonite formation occurs in a very short time. It is a thermodynamically and chemically stable solid product, which allows for a long-term storage of CO2. Since the carbonation reaction is a complex system which includes dissolution of magnesium hydroxide particles, absorption of CO2, chemical reaction and crystallization, the dissolution of magnesium hydroxide was studied in hydrochloric acid (HCl) solvent with and without nitrogen (N2) inert gas. It was found on the dissolution part that the impeller speed had effect on the dissolution rate. The higher the impeller speed the higher the pH of the solution, although for the highest speed of 650rpm it was not the case. Therefore, it was concluded that the optimum speed of the stirrer was 560rpm. The influence of inert gas N2 on the dissolution rate of Mg(OH)2 particles could be seen based on measured pH, electric conductivity and Mg2+ concentration curves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to reach the 2°C climate target, the carbon price should rise significantly in order for it to be financially rewarding for companies to reduce their emissions. This research aims to find how a significant increase in the carbon price would affect the profitability of companies. Prior research has not found consensus on how regulatory policies affect companies. This research looks at profitability factors of carbon pricing through a mix of related issues such as the carbon risk, carbon pricing mechanisms and cost pass-through of additional costs. The research is quantitative and examines financial data and emissions data regarding scope 1 and scope 2 emissions on 328 European companies. The data analysis method utilised is a sensitivity analysis conducted as a scenario analysis. Different price increases and cost pass-through rates are tested to see how company profitability is affected. As the companies are distributed between 9 sectors and 53 industries, the results vary. The industries that are found to be affected by an increase in carbon pricing show drastic negative changes in profitability. The results complement prior research identifying the most carbon-intensive industries, but also provide some new insights on industries that may be affected by carbon pricing. Industries related to manufacturing, electricity and energy are partly significantly impacted, but also industries related to tourism and food show potential signs of impact when an increased carbon price is introduced.