55 resultados para 210.0210
Resumo:
The evolution of our society is impossible without a constant progress in life-important areas such as chemical engineering and technology. Innovation, creativity and technology are three main components driving the progress of chemistry further towards a sustainable society. Biomass, being an attractive renewable feedstock for production of fine chemicals, energy-rich materials and even transportation fuels, captures progressively new positions in the area of chemical technology. Knowledge of heterogeneous catalysis and chemical technology applied to transformation of biomass-derived substances will open doors for a sustainable economy and facilitates the discovery of novel environmentally-benign processes which probably will replace existing technologies in the era of biorefinary. Aqueous-phase reforming (APR) is regarded as a promising technology for production of hydrogen and liquids fuels from biomass-derived substances such as C3-C6 polyols. In the present work, aqueous-phase reforming of glycerol, xylitol and sorbitol was investigated in the presence of supported Pt catalysts. The catalysts were deposited on different support materials, including Al2O3, TiO2 and carbons. Catalytic measurements were performed in a laboratory-scale continuous fixedbed reactor. An advanced analytical approach was developed in order to identify reaction products and reaction intermediates in the APR of polyols. The influence of the substrate structure on the product formation and selectivity in the APR reaction was also investigated, showing that the yields of the desired products varied depending on the substrate chain length. Additionally, the influence of bioethanol additive in the APR of glycerol and sorbitol was studied. A reaction network was advanced explaining the formation of products and key intermediates. The structure sensitivity in the aqueous-phase reforming reaction was demonstrated using a series of platinum catalysts supported on carbon with different Pt cluster sizes in the continuous fixed-bed reactor. Furthermore, a correlation between texture physico-chemical properties of the catalysts and catalytic data was established. The effect of the second metal (Re, Cu) addition to Pt catalysts was investigated in the APR of xylitol showing a superior hydrocarbon formation on PtRe bimetallic catalysts compared to monometallic Pt. On the basis of the experimental data obtained, mathematical modeling of the reaction kinetics was performed. The developed model was proven to successfully describe experimental data on APR of sorbitol with good accuracy.
Resumo:
Kirjallisuusarvostelu
Resumo:
Kirjallisuusarvostelu
Resumo:
Kirjallisuusarvostelu
Resumo:
Kirjallisuusarvostelu
Resumo:
Kirjallisuusarvostelu
Resumo:
Poster at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
Kirjallisuusarvostelu
Resumo:
The sustainable management of municipal solid waste in the Kathmandu Valley has always been a challenging task. Solid waste generation has gone rapidly high in the Kathmandu Valley over the last decade due to booming population and rapid urbaniza-tion. Finding appropriate landfill sites for the disposal of solid wastes generated from the households of the Kathmandu Valley has always been a major problem for Nepalese government. 65 % of total generated wastes from the households of Nepal consist of organic materials. As large fractions of generated household wastes are organic in na-ture, composting can be considered as one of the best sustainable ways to recycle organ-ic wastes generated from the households of Nepal. Model Community Society Development (MCDS), a non-governmental organization of Nepal carried out its small-scale project in five households of the Kathmandu Valley by installing composting reactors. This thesis is based on this small-scale project and has used secondary data provided by MCDS Nepal for carrying out the study. Proper man-agement of organic wastes can be done at household levels through the use of compost-ing reactors. The end product compost can be used as soil conditioners for agricultural purposes such as organic farming, roof-top farming and gardening. The overall average organic waste generation in the Kathmandu Valley is found to be 0,23 kg/person/day and the total amount of organic household wastes generated in the Kathmandu Valley is around 210 Gg/yr. Produced composts from five composting reac-tors contain high amount of moistures but have sufficient amount of nutrients required for the fertility of land and plant growth. Installation of five composting reactors in five households have prevented 2,74 Mg of organic wastes going into the landfills, thus re-ducing 107 kg of methane emissions which is equivalent to 2,7 Mg of carbondioxide.