46 resultados para social control of investment
Resumo:
Adaptive control systems are one of the most significant research directions of modern control theory. It is well known that every mechanical appliance’s behavior noticeably depends on environmental changes, functioning-mode parameter changes and changes in technical characteristics of internal functional devices. An adaptive controller involved in control process allows reducing an influence of such changes. In spite of this such type of control methods is applied seldom due to specifics of a controller designing. The work presented in this paper shows the design process of the adaptive controller built by Lyapunov’s function method for the Hydraulic Drive. The calculation needed and the modeling were conducting with MATLAB® software including Simulink® and Symbolic Math Toolbox™ etc. In the work there was applied the Jacobi matrix linearization of the object’s mathematical model and derivation of the suitable reference models based on Newton’s characteristic polynomial. The intelligent adaptive to nonlinearities algorithm for solving Lyapunov’s equation was developed. Developed algorithm works properly but considered plant is not met requirement of functioning with. The results showed confirmation that adaptive systems application significantly increases possibilities in use devices and might be used for correction a system’s behavior dynamics.
Resumo:
In this thesis, the main point of interest is the robust control of a DC/DC converter. The use of reactive components in the power conversion gives rise to dynamical effects in DC/DC converters and the dynamical effects of the converter mandates the use of active control. Active control uses measurements from the converter to correct errors present in the converter’s output. The controller needs to be able to perform in the presence of varying component values and different kinds of disturbances in loading and noises in measurements. Such a feature in control design is referred as robustness. This thesis also contains survey of general properties of DC/DC converters and their effects on control design. In this thesis, a linear robust control design method is studied. A robust controller is then designed and applied to the current control of a phase shifted full bridge converter. The experimental results are shown to match simulations.
Resumo:
The dissertation proposes two control strategies, which include the trajectory planning and vibration suppression, for a kinematic redundant serial-parallel robot machine, with the aim of attaining the satisfactory machining performance. For a given prescribed trajectory of the robot's end-effector in the Cartesian space, a set of trajectories in the robot's joint space are generated based on the best stiffness performance of the robot along the prescribed trajectory. To construct the required system-wide analytical stiffness model for the serial-parallel robot machine, a variant of the virtual joint method (VJM) is proposed in the dissertation. The modified method is an evolution of Gosselin's lumped model that can account for the deformations of a flexible link in more directions. The effectiveness of this VJM variant is validated by comparing the computed stiffness results of a flexible link with the those of a matrix structural analysis (MSA) method. The comparison shows that the numerical results from both methods on an individual flexible beam are almost identical, which, in some sense, provides mutual validation. The most prominent advantage of the presented VJM variant compared with the MSA method is that it can be applied in a flexible structure system with complicated kinematics formed in terms of flexible serial links and joints. Moreover, by combining the VJM variant and the virtual work principle, a systemwide analytical stiffness model can be easily obtained for mechanisms with both serial kinematics and parallel kinematics. In the dissertation, a system-wide stiffness model of a kinematic redundant serial-parallel robot machine is constructed based on integration of the VJM variant and the virtual work principle. Numerical results of its stiffness performance are reported. For a kinematic redundant robot, to generate a set of feasible joints' trajectories for a prescribed trajectory of its end-effector, its system-wide stiffness performance is taken as the constraint in the joints trajectory planning in the dissertation. For a prescribed location of the end-effector, the robot permits an infinite number of inverse solutions, which consequently yields infinite kinds of stiffness performance. Therefore, a differential evolution (DE) algorithm in which the positions of redundant joints in the kinematics are taken as input variables was employed to search for the best stiffness performance of the robot. Numerical results of the generated joint trajectories are given for a kinematic redundant serial-parallel robot machine, IWR (Intersector Welding/Cutting Robot), when a particular trajectory of its end-effector has been prescribed. The numerical results show that the joint trajectories generated based on the stiffness optimization are feasible for realization in the control system since they are acceptably smooth. The results imply that the stiffness performance of the robot machine deviates smoothly with respect to the kinematic configuration in the adjacent domain of its best stiffness performance. To suppress the vibration of the robot machine due to varying cutting force during the machining process, this dissertation proposed a feedforward control strategy, which is constructed based on the derived inverse dynamics model of target system. The effectiveness of applying such a feedforward control in the vibration suppression has been validated in a parallel manipulator in the software environment. The experimental study of such a feedforward control has also been included in the dissertation. The difficulties of modelling the actual system due to the unknown components in its dynamics is noticed. As a solution, a back propagation (BP) neural network is proposed for identification of the unknown components of the dynamics model of the target system. To train such a BP neural network, a modified Levenberg-Marquardt algorithm that can utilize an experimental input-output data set of the entire dynamic system is introduced in the dissertation. Validation of the BP neural network and the modified Levenberg- Marquardt algorithm is done, respectively, by a sinusoidal output approximation, a second order system parameters estimation, and a friction model estimation of a parallel manipulator, which represent three different application aspects of this method.
Resumo:
Malaria continues to infect millions and kill hundreds of thousands of people worldwide each year, despite over a century of research and attempts to control and eliminate this infectious disease. Challenges such as the development and spread of drug resistant malaria parasites, insecticide resistance to mosquitoes, climate change, the presence of individuals with subpatent malaria infections which normally are asymptomatic and behavioral plasticity in the mosquito hinder the prospects of malaria control and elimination. In this thesis, mathematical models of malaria transmission and control that address the role of drug resistance, immunity, iron supplementation and anemia, immigration and visitation, and the presence of asymptomatic carriers in malaria transmission are developed. A within-host mathematical model of severe Plasmodium falciparum malaria is also developed. First, a deterministic mathematical model for transmission of antimalarial drug resistance parasites with superinfection is developed and analyzed. The possibility of increase in the risk of superinfection due to iron supplementation and fortification in malaria endemic areas is discussed. The model results calls upon stakeholders to weigh the pros and cons of iron supplementation to individuals living in malaria endemic regions. Second, a deterministic model of transmission of drug resistant malaria parasites, including the inflow of infective immigrants, is presented and analyzed. The optimal control theory is applied to this model to study the impact of various malaria and vector control strategies, such as screening of immigrants, treatment of drug-sensitive infections, treatment of drug-resistant infections, and the use of insecticide-treated bed nets and indoor spraying of mosquitoes. The results of the model emphasize the importance of using a combination of all four controls tools for effective malaria intervention. Next, a two-age-class mathematical model for malaria transmission with asymptomatic carriers is developed and analyzed. In development of this model, four possible control measures are analyzed: the use of long-lasting treated mosquito nets, indoor residual spraying, screening and treatment of symptomatic, and screening and treatment of asymptomatic individuals. The numerical results show that a disease-free equilibrium can be attained if all four control measures are used. A common pitfall for most epidemiological models is the absence of real data; model-based conclusions have to be drawn based on uncertain parameter values. In this thesis, an approach to study the robustness of optimal control solutions under such parameter uncertainty is presented. Numerical analysis of the optimal control problem in the presence of parameter uncertainty demonstrate the robustness of the optimal control approach that: when a comprehensive control strategy is used the main conclusions of the optimal control remain unchanged, even if inevitable variability remains in the control profiles. The results provide a promising framework for the design of cost-effective strategies for disease control with multiple interventions, even under considerable uncertainty of model parameters. Finally, a separate work modeling the within-host Plasmodium falciparum infection in humans is presented. The developed model allows re-infection of already-infected red blood cells. The model hypothesizes that in severe malaria due to parasite quest for survival and rapid multiplication, the Plasmodium falciparum can be absorbed in the already-infected red blood cells which accelerates the rupture rate and consequently cause anemia. Analysis of the model and parameter identifiability using Markov chain Monte Carlo methods is presented.
Resumo:
Brain computer interface (BCI) is a kind of human machine interface, which provides a new interaction method between human and computer or other equipment. The most significant characteristic of BCI system is that its control input is brain electrical activities acquired from the brain instead of traditional input such as hands or eyes. BCI technique has rapidly developed during last two decades and it has mainly worked as an auxiliary technique to help the disable people improve their life qualities. With the appearance of low cost novel electrical devices such as EMOTIV, BCI technique has been applied to the general public through many useful applications including video gaming, virtual reality and virtual keyboard. The purpose of this research is to be familiar with EMOTIV EPOC system and make use of it to build an EEG based BCI system for controlling an industrial manipulator by means of human thought. To build a BCI system, an acquisition program based on EMOTIV EPOC system is designed and a MFC based dialog that works as an operation panel is presented. Furthermore, the inverse kinematics of RV-3SB industrial robot was solved. In the last part of this research, the designed BCI system with human thought input is examined and the results indicate that the system is running smoothly and displays clearly the motion type and the incremental displacement of the motion.
Resumo:
Many, if not all, aspects of our everyday lives are related to computers and control. Microprocessors and wireless communications are involved in our lives. Embedded systems are an attracting field because they combine three key factors, small size, low power consumption and high computing capabilities. The aim of this thesis is to study how Linux communicates with the hardware, to answer the question if it is possible to use an operating system like Debian for embedded systems and finally, to build a Mechatronic real time application. In the thesis a presentation of Linux and the Xenomai real time patch is given, the bootloader and communication with the hardware is analyzed. BeagleBone the evaluation board is presented along with the application project consisted of a robot cart with a driver circuit, a line sensor reading a black line and two Xbee antennas. It makes use of Xenomai threads, the real time kernel. According to the obtained results, Linux is able to operate as a real time operating system. The issue of future research is the area of embedded Linux is also discussed.
Resumo:
The lack of research of private real estate is a well-known problem. Earlier studies have mostly concentrated on the USA or the UK. Therefore, this master thesis offers more information about the performance and risk associated with private real estate investments in Nordic countries, but especially in Finland. The structure of this master thesis is divided into two independent sections based on the research questions. In first section, database analysis is performed to assess risk-return ratio of direct real estate investment for Nordic countries. Risk-return ratios are also assessed for different property sectors and economic regions. Finally, review of diversification strategies based on property sectors and economic regions is performed. However, standard deviation itself is not usually sufficient method to evaluate riskiness of private real estate. There is demand for more explicit assessment of property risk. One solution is property risk scoring. In second section risk scorecard based tool is built to make different real estate comparable in terms of risk. In order to do this, nine real estate professionals were interviewed to enhance the structure of theory-based risk scorecard and to assess weights for different risk factors.
Resumo:
The awareness and concern of our environment together with legislation have set more and more tightening demands for energy efficiency of non-road mobile machinery (NRMM). Integrated electro-hydraulic energy converter (IEHEC) has been developed in Lappeenranta University of Technology (LUT). The elimination of resistance flow, and the recuperation of energy makes it very efficient alternative. The difficulties of IEHEC machine to step to the market has been the requirement of one IEHEC machine per one actuator. The idea is to switch IEHEC between two actuators of log crane using fast on/off valves. The control system architecture is introduced. The system has been simulated in co-simulation using two different software. The simulated responses of pump-controlled system is compared to the responses of the conventional valve-controlled system.
Resumo:
There exist several researches and applications about laser welding monitoring and parameter control but not a single one have been created for controlling of laser scribing processes. Laser scribing is considered to be very fast and accurate process and thus it would be necessary to develop accurate turning and monitoring system for such a process. This research focuses on finding out whether it would be possible to develop real-time adaptive control for ultra-fast laser scribing processes utilizing spectrometer online monitoring. The thesis accurately presents how control code for laser parameter tuning is developed using National Instrument's LabVIEW and how spectrometer is being utilized in online monitoring. Results are based on behavior of the control code and accuracy of the spectrometer monitoring when scribing different steel materials. Finally control code success is being evaluated and possible development ideas for future are presented.