57 resultados para parent material


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis focuses on tissue inhibitor of metalloproteinases 4 (TIMP4) which is the newest member of a small gene and protein family of four closely related endogenous inhibitors of extracellular matrix (ECM) degrading enzymes. Existing data on TIMP4 suggested that it exhibits a more restricted expression pattern than the other TIMPs with high expression levels in heart, brain, ovary and skeletal muscle. These observations and the fact that the ECM is of special importance to provide the cardiovascular system with structural strength combined with elasticity and distensibility, prompted the present molecular biologic investigation on TIMP4. In the first part of the study the murine Timp4 gene was cloned and characterized in detail. The structure of murine Timp4 genomic locus resembles that in other species and of the other Timps. The highest Timp4 expression was detected in heart, ovary and brain. As the expression pattern of Timp4 gives only limited information about its role in physiology and pathology, Timp4 knockout mice were generated next. The analysis of Timp4 knockout mice revealed that Timp4 deficiency has no obvious effect on the development, growth or fertility of mice. Therefore, Timp4 deficient mice were challenged using available cardiovascular models, i.e. experimental cardiac pressure overload and myocardial infarction. In the former model, Timp4 deficiency was found to be compensated by Timp2 overexpression, whereas in the myocardial infarct model, Timp4 deficiency resulted in increased mortality due to increased susceptibility for cardiac rupture. In the wound healing model, Timp4 deficiency was shown to result in transient retardation of re-epithelialization of cutaneous wounds. Melanoma tumor growth was similar in Timp4 deficient and control mice. Despite of this, lung metastasis of melanoma cells was significantly increased in Timp4 null mice. In an attempt to translate the current findings to patient material, TIMP4 expression was studied in human specimens representing different inflammatory cardiovascular pathologies, i.e. giant cell arteritis, atherosclerotic coronary arteries and heart allografts exhibiting signs of chronic rejection. The results showed that cardiovascular expression of TIMP4 is elevated particularly in areas exhibiting inflammation. The results of the present studies suggest that TIMP4 has a special role in the regulation of tissue repair processes in the heart, and also in healing wounds and metastases. Furthermore, evidence is provided suggesting the usefulness of TIMP4 as a novel systemic marker for vascular inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Repair of segmental defects in load-bearing long bones is a challenging task because of the diversity of the load affecting the area; axial, bending, shearing and torsional forces all come together to test the stability/integrity of the bone. The natural biomechanical requirements for bone restorative materials include strength to withstand heavy loads, and adaptivity to conform into a biological environment without disturbing or damaging it. Fiber-reinforced composite (FRC) materials have shown promise, as metals and ceramics have been too rigid, and polymers alone are lacking in strength which is needed for restoration. The versatility of the fiber-reinforced composites also allows tailoring of the composite to meet the multitude of bone properties in the skeleton. The attachment and incorporation of a bone substitute to bone has been advanced by different surface modification methods. Most often this is achieved by the creation of surface texture, which allows bone growth, onto the substitute, creating a mechanical interlocking. Another method is to alter the chemical properties of the surface to create bonding with the bone – for example with a hydroxyapatite (HA) or a bioactive glass (BG) coating. A novel fiber-reinforced composite implant material with a porous surface was developed for bone substitution purposes in load-bearing applications. The material’s biomechanical properties were tailored with unidirectional fiber reinforcement to match the strength of cortical bone. To advance bone growth onto the material, an optimal surface porosity was created by a dissolution process, and an addition of bioactive glass to the material was explored. The effects of dissolution and orientation of the fiber reinforcement were also evaluated for bone-bonding purposes. The Biological response to the implant material was evaluated in a cell culture study to assure the safety of the materials combined. To test the material’s properties in a clinical setting, an animal model was used. A critical-size bone defect in a rabbit’s tibia was used to test the material in a load-bearing application, with short- and long-term follow-up, and a histological evaluation of the incorporation to the host bone. The biomechanical results of the study showed that the material is durable and the tailoring of the properties can be reproduced reliably. The Biological response - ex vivo - to the created surface structure favours the attachment and growth of bone cells, with the additional benefit of bioactive glass appearing on the surface. No toxic reactions to possible agents leaching from the material could be detected in the cell culture study when compared to a nontoxic control material. The mechanical interlocking was enhanced - as expected - with the porosity, whereas the reinforcing fibers protruding from the surface of the implant gave additional strength when tested in a bone-bonding model. Animal experiments verified that the material is capable of withstanding load-bearing conditions in prolonged use without breaking of the material or creating stress shielding effects to the host bone. A Histological examination verified the enhanced incorporation to host bone with an abundance of bone growth onto and over the material. This was achieved with minimal tissue reactions to a foreign body. An FRC implant with surface porosity displays potential in the field of reconstructive surgery, especially regarding large bone defects with high demands on strength and shape retention in load-bearing areas or flat bones such as facial / cranial bones. The benefits of modifying the strength of the material and adjusting the surface properties with fiber reinforcement and bone-bonding additives to meet the requirements of different bone qualities are still to be fully discovered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Julkaisumaa: 530 AN ANT Alankomaiden Antillit

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is known already from 1970´s that laser beam is suitable for processing paper materials. In this thesis, term paper materials mean all wood-fibre based materials, like dried pulp, copy paper, newspaper, cardboard, corrugated board, tissue paper etc. Accordingly, laser processing in this thesis means all laser treatments resulting material removal, like cutting, partial cutting, marking, creasing, perforation etc. that can be used to process paper materials. Laser technology provides many advantages for processing of paper materials: non-contact method, freedom of processing geometry, reliable technology for non-stop production etc. Especially packaging industry is very promising area for laser processing applications. However, there are only few industrial laser processing applications worldwide even in beginning of 2010´s. One reason for small-scale use of lasers in paper material manufacturing is that there is a shortage of published research and scientific articles. Another problem, restraining the use of laser for processing of paper materials, is colouration of paper material i.e. the yellowish and/or greyish colour of cut edge appearing during cutting or after cutting. These are the main reasons for selecting the topic of this thesis to concern characterization of interaction of laser beam and paper materials. This study was carried out in Laboratory of Laser Processing at Lappeenranta University of Technology (Finland). Laser equipment used in this study was TRUMPF TLF 2700 carbon dioxide laser that produces a beam with wavelength of 10.6 μm with power range of 190-2500 W (laser power on work piece). Study of laser beam and paper material interaction was carried out by treating dried kraft pulp (grammage of 67 g m-2) with different laser power levels, focal plane postion settings and interaction times. Interaction between laser beam and dried kraft pulp was detected with different monitoring devices, i.e. spectrometer, pyrometer and active illumination imaging system. This way it was possible to create an input and output parameter diagram and to study the effects of input and output parameters in this thesis. When interaction phenomena are understood also process development can be carried out and even new innovations developed. Fulfilling the lack of information on interaction phenomena can assist in the way of lasers for wider use of technology in paper making and converting industry. It was concluded in this thesis that interaction of laser beam and paper material has two mechanisms that are dependent on focal plane position range. Assumed interaction mechanism B appears in range of average focal plane position of 3.4 mm and 2.4 mm and assumed interaction mechanism A in range of average focal plane position of 0.4 mm and -0.6 mm both in used experimental set up. Focal plane position 1.4 mm represents midzone of these two mechanisms. Holes during laser beam and paper material interaction are formed gradually: first small hole is formed to interaction area in the centre of laser beam cross-section and after that, as function of interaction time, hole expands, until interaction between laser beam and dried kraft pulp is ended. By the image analysis it can be seen that in beginning of laser beam and dried kraft pulp material interaction small holes off very good quality are formed. It is obvious that black colour and heat affected zone appear as function of interaction time. This reveals that there still are different interaction phases within interaction mechanisms A and B. These interaction phases appear as function of time and also as function of peak intensity of laser beam. Limit peak intensity is the value that divides interaction mechanism A and B from one-phase interaction into dual-phase interaction. So all peak intensity values under limit peak intensity belong to MAOM (interaction mechanism A one-phase mode) or to MBOM (interaction mechanism B onephase mode) and values over that belong to MADM (interaction mechanism A dual-phase mode) or to MBDM (interaction mechanism B dual-phase mode). Decomposition process of cellulose is evolution of hydrocarbons when temperature is between 380- 500°C. This means that long cellulose molecule is split into smaller volatile hydrocarbons in this temperature range. As temperature increases, decomposition process of cellulose molecule changes. In range of 700-900°C, cellulose molecule is mainly decomposed into H2 gas; this is why this range is called evolution of hydrogen. Interaction in this range starts (as in range of MAOM and MBOM), when a small good quality hole is formed. This is due to “direct evaporation” of pulp via decomposition process of evolution of hydrogen. And this can be seen can be seen in spectrometer as high intensity peak of yellow light (in range of 588-589 nm) which refers to temperature of ~1750ºC. Pyrometer does not detect this high intensity peak since it is not able to detect physical phase change from solid kraft pulp to gaseous compounds. As interaction time between laser beam and dried kraft pulp continues, hypothesis is that three auto ignition processes occurs. Auto ignition of substance is the lowest temperature in which it will spontaneously ignite in a normal atmosphere without an external source of ignition, such as a flame or spark. Three auto ignition processes appears in range of MADM and MBDM, namely: 1. temperature of auto ignition of hydrogen atom (H2) is 500ºC, 2. temperature of auto ignition of carbon monoxide molecule (CO) is 609ºC and 3. temperature of auto ignition of carbon atom (C) is 700ºC. These three auto ignition processes leads to formation of plasma plume which has strong emission of radiation in range of visible light. Formation of this plasma plume can be seen as increase of intensity in wavelength range of ~475-652 nm. Pyrometer shows maximum temperature just after this ignition. This plasma plume is assumed to scatter laser beam so that it interacts with larger area of dried kraft pulp than what is actual area of beam cross-section. This assumed scattering reduces also peak intensity. So result shows that assumably scattered light with low peak intensity is interacting with large area of hole edges and due to low peak intensity this interaction happens in low temperature. So interaction between laser beam and dried kraft pulp turns from evolution of hydrogen to evolution of hydrocarbons. This leads to black colour of hole edges.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrochemical double-layer supercapacitors have an intermediate position between rechargeable batteries, which can store high amounts of energy, and dielectric capacitors, which have high output power. Supercapacitors are widely suggested to be used in automobiles (recuperation during braking, facilitate engine starting, electric stabilization of the system), industry (forklifts, elevators), hybrid off-road machinery and also in consumer electronics. Supercapacitor electrodes require highly porous material. Typically, activated carbon is used. Specific surface area of activated carbon is approximately 1000 m2 per gram. Carbon nanotubes represent one of prospective materials. According to numerous studies this material allows to improve the properties of supercapacitors. The task of this Master‘s Thesis was to test multiwalled carbon nanotubes and become confident with the testing methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research report illustrates and examines new operation models for decreasing fixed costs and transforming them into variable costs in the field of paper industry. The report illustrates two cases – a new operation model for material logistics in maintenance and an examination of forklift truck fleet outsourcing solutions. Conventional material logistics in maintenance operation is illustrated and some problems related to conventional operation are identified. A new operation model that solves some of these problems is presented including descriptions of procurement and service contracts and sources of added value. Forklift truck fleet outsourcing solutions are examined by illustrating the responsibilities of a host company and a service provider both before and after outsourcing. The customer buys outsourcing services in order to improve its investment productivity. The mechanism of how these services affect the customer company’s investment productivity is illustrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis investigated building information modeling (BIM) from a material supplier’s point of view. The objective was to gain understanding about how a building material supplier could benefit from the growing use of BIM in the AEC (architectural, engineering and construction) industry. Increasing amount of inquiries related to BIM from customers and other interest groups had awoken target company’s interest towards BIM. This thesis acts as a pre-study for the target company related to potential of BIM. First of all BIM and its meaning from a material supplier’s point of view was defined based on a literature review. To reveal the potential benefits of BIM for a material supplier a questionnaire survey and in total of 11 interviews were conducted. Based on the literature review and analyzed results it came clear that BIM offers benefits also for material suppliers. Product libraries and material databases for BIM tools can act as an important marketing channel for material suppliers. Material suppliers could also utilize the information from the BIM models to schedule their deliveries more precisely and potentially even to schedule their own production. All this needs deeper cooperation between material suppliers, contractors and other stakeholders in the AEC industry. Based on the results also first steps for the target company to utilize the growing use of BIM were defined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Operation of pulp and paper mills generates waste including wastewater treatment sludge and deinking sludge. Both sludge types are generated in large amounts and are mainly disposed of in landfills in the Leningrad Region resulting in environmental degradation. The thesis was aimed at seeking new sustainable ways of sludge utilization. Two paper mills operating in the Leningrad Region and landfilling their sludge were identified: “SCA Hygiene Products Russia” and “Knauf”. The former generates 150 t/day of deinking sludge, the latter – 145 t/day of secondary sludge. Chemical analyses of deinking sludge were performed to assess applicability of sludge in construction materials production processes. Higher heating value on dry basis of both sludge types was determined to evaluate energy potential of sludge generated in the Leningrad Region. Total energy output from sludge incineration was calculated. Deinking sludge could be utilized in the production process of “LSR-Cement” or “Slantsy Cement Plant Cesla” factories, and “Pobeda” and “Nikolsky” brick mills without exceeding current sludge management costs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fiber-reinforced composites (FRCs) are a new group of non-metallic biomaterials showing a growing popularity in many dental and medical applications. As an oral implant material, FRC is biocompatible in bone tissue environment. Soft tissue integration to FRC polymer material is unclear. This series of in vitro studies aimed at evaluating unidirectional E-glass FRC polymer in terms of mechanical, chemical, and biological properties in an attempt to develop a new non-metallic oral implant abutment alternative. Two different types of substrates were investigated: (a) Plain polymer (BisGMA 50%–TEGDMA 50%) and (b) Unidirectional FRC. The mechanical behavior of high fiber-density FRCs was assessed using a three-point bending test. Surface characterization was performed using scanning electron and spinning disk confocal microscopes. The surface wettability/energy was determined using sessile drop method. The blood response, including blood-clotting ability and platelet morphology was evaluated. Human gingival fibroblast cell responses - adhesion kinetics, adhesion strength, and proliferation activity - were studied in cell culture environment using routine test conditions. A novel tissue culture method was developed and used to evaluate porcine gingival tissue graft attachment and growth on the experimental composite implants. The analysis of the mechanical properties showed that there is a direct proportionality in the relationship between E-glass fiber volume fraction and toughness, modulus of elasticity, and load bearing capacity; however, flexural strength did not show significant improvement when high fiber-density FRC is used. FRCs showed moderate hydrophilic properties owing to the presence of exposed glass fibers on the polymer surface. Blood-clotting time was shorter on FRC substrates than on plain polymer. The FRC substrates also showed higher platelet activation state than plain polymer substrates. Fibroblast cell adhesion strength and proliferation rate were highly pronounced on FRCs. A tissue culture study revealed that gingival epithelium and connective tissue established an immediate close contact with both plain polymer and FRC implants. However, FRC seemed to guide epithelial migration outwards from the tissue/implant interface. Due to the anisotropic and hydrophilic nature of FRC, it can be concluded that this material enhances biological events related with soft tissue integration on oral implant surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work is to study the results of tensile tests for austenitic stainless steel type 304 and make accurate FE-models according to the results of the tests. Tensile tests were made at Central Research Institute of Structural Material, Prometey at Saint Petersburg and Mariyenburg in Russia. The test specimens for the tensile tests were produced at Lappeenranta University of Technology in a Laboratory of Steel Structures. In total 4 different tests were made, two with base material specimens and two with transverse butt weld specimens. Each kind of a specimen was tested at room temperature and at low temperature. By comparing the results of room and low temperature tests of similar test specimen we get to study the results of work hardening that affect the austenitic steels at below room temperature. The produced specimens are to be modeled accurately and then imported for nonlinear FEM- analyzing. Using the data gained from the tensile tests the aim is to get the models work like the specimens did during the tests. By using the analyzed results of the FE-models the aim is to calculate and get the stress-strain curves that correspond to the results acquired from the tensile tests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Presentation at the 12th Bibliotheca Baltica Symposium at Södertörn University Library

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aims were to find out 1) if schools’ oral health practices were associated with pupils’ oral health behaviour and whether 2) the national sweet-selling recommendation and 3) distributing oral health material (OHEM) affected schools as oral health promoters. Three independently collected datasets from Finnish upper comprehensive schools (N=988) were used: longitudinal oral health practices data (n=258) with three-year follow up (2007 n=480, 2008 n=508, 2009 n=593) from principals’ online questionnaires, oral health behaviour data from pupils participating in the national School Health Promotion Study (n=970 schools) and oral health education data from health education teachers’ online questionnaires (2008 n=563, 2009 n=477 teachers). Oral health practices data and oral health behaviour data were combined (n=414) to answer aim 1. For aims 2 and 3, oral health practices data and oral health education data were used independently. School sweet selling and an open campus policy were associated with pupils’ use of sweet products and tobacco products during school time. The National Recommendation was quite an effective way to reduce the number of sweet-selling schools, but there were large regional differences and a lack of a clear oral health policy in the schools. OHEM did not increase the proportion of teachers teaching oral health, but teachers started to cover oral health topics more frequently. Women started to use OHEM more often than men did. Schools’ oral health policy should include prohibiting the selling of sweet products in school by legislative actions, enabling healthy alternatives instead, and setting a closed campus policy to protect pupils from school-time sweet consuming and smoking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this Master´s Thesis was to conduct a wide scale preliminary survey regarding the package requirements of a cultured dairy package, and to compare the currently used material polystyrene to other suitable packaging materials. Polystyrene has a long history of use in dairy cups, but in recent years its price has increased significantly compared to other common packaging materials. The overall environmental effects of a package and a package material are today a part of designing a sustainable product life cycle. In addition, in certain contexts there has been discussion of the risks posed by styrene polymer for the environment and for humans. These risks are also discussed in this thesis. Polystyrene (PS) is still the most widely used material in dairy cups. In recent years, polypropylene (PP) cups have appeared in increasing numbers on market shelves. This study focuses on the differences of the suitable polymers and examines the suitability of alternative “suitable” polymers with regards to dairy packaging. Aside from focusing on the cup manufacturer, this thesis also examines its subject matter from the viewpoint of the dairy customer, as well as observing the concrete implications of material changes in the overall value chain. It was known in advance that material permeability would be one of the determining factors and that gas transmission testing would be a significant part of the thesis. Mechanical tests were the second part of the testing process, providing information regarding package strength and protectiveness during the package’s life cycle. Production efficiency, along with uninterrupted stable production, was another important factor that was taken into consideration. These two issues are sometimes neglected in similar contexts due to their self-evident nature. In addition, materials used in production may have a surprising significance to the production and efficiency. Consistent high quality is also partly based on material selection. All of the aforementioned factors have been documented and the results have been analyzed by the development team at Coveris Rigid Finland. Coveris is now calculating the total finance effects and capacities should the material changes be implemented in practice. There are many factors in favor of switching to polypropylene at the moment. The overall production costs, as well as the environmental effects of resin production are the primary influences for said switch from the converters’ perspective.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laser additive manufacturing (LAM), known also as 3D printing, is a powder bed fusion (PBF) type of additive manufacturing (AM) technology used to manufacture metal parts layer by layer by assist of laser beam. The development of the technology from building just prototype parts to functional parts is due to design flexibility. And also possibility to manufacture tailored and optimised components in terms of performance and strength to weight ratio of final parts. The study of energy and raw material consumption in LAM is essential as it might facilitate the adoption and usage of the technique in manufacturing industries. The objective this thesis was find the impact of LAM on environmental and economic aspects and to conduct life cycle inventory of CNC machining and LAM in terms of energy and raw material consumption at production phases. Literature overview in this thesis include sustainability issues in manufacturing industries with focus on environmental and economic aspects. Also life cycle assessment and its applicability in manufacturing industry were studied. UPLCI-CO2PE! Initiative was identified as mostly applied exiting methodology to conduct LCI analysis in discrete manufacturing process like LAM. Many of the reviewed literature had focused to PBF of polymeric material and only few had considered metallic materials. The studies that had included metallic materials had only measured input and output energy or materials of the process and compared to different AM systems without comparing to any competitive process. Neither did any include effect of process variation when building metallic parts with LAM. Experimental testing were carried out to make dissimilar samples with CNC machining and LAM in this thesis. Test samples were designed to include part complexity and weight reductions. PUMA 2500Y lathe machine was used in the CNC machining whereas a modified research machine representing EOSINT M-series was used for the LAM. The raw material used for making the test pieces were stainless steel 316L bar (CNC machined parts) and stainless steel 316L powder (LAM built parts). An analysis of power, time, and the energy consumed in each of the manufacturing processes on production phase showed that LAM utilises more energy than CNC machining. The high energy consumption was as result of duration of production. Energy consumption profiles in CNC machining showed fluctuations with high and low power ranges. LAM energy usage within specific mode (standby, heating, process, sawing) remained relatively constant through the production. CNC machining was limited in terms of manufacturing freedom as it was not possible to manufacture all the designed sample by machining. And the one which was possible was aided with large amount of material removed as waste. Planning phase in LAM was shorter than in CNC machining as the latter required many preparation steps. Specific energy consumption (SEC) were estimated in LAM based on the practical results and assumed platform utilisation. The estimated platform utilisation showed SEC could reduce when more parts were placed in one build than it was in with the empirical results in this thesis (six parts).