45 resultados para computational image processing


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tämä työ käsittelee puutukkien tilavuuden mittaamista värikonenäön avulla. Värikuvat on saatu Simpeleellä olevan metsäteollisuusyrityksen hiomosta. Työssä esitetään perusteellisesti matemaattinen teoria, joka liittyy käytettyihin kuvankäsittelymenetelmiin, kuten luokitteluun, kohinan poistoon ja tukkien segmentointiin. Esitetyt menetelmät implementointiin käytännössä ja eri menetelmillä saatuja tuloksia vertailtiin keskenään. Kuvankäsittelyalgoritmit on implementoitu Matlab 6.0:n avulla. Pääasiassa käytettiin uusinta Image Processing Toolboxia, joka on versio 3.0. Tämä työn näkökulma on pääasiassa käytäntöön soveltava, koska metsäteollsuus on korkealla tasolla Suomessa ja siellä on paljon alan yrityksiä, joissa tässä työssä kehitettyä menetelmää voidaan hyödyntää.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Työssä verrattiin perälaatikoilla 1 ja 2 valmistettujen papereiden rakenteellisia ominaisuuksia. Paperin rakenteessa formaatio oli tärkein ominaisuus ja sen jälkeen kuituorientaatio. Näytteiden valintaperusteena pidettiin sitä, että vertailtavilla näytteillä formaatio (pohja) oli paras kyseisellä perälaatikolla ja vetolujuussuhteet olivat samoja. Toinen valintatapa oli verrata samoissa virtausolosuhteissa valmistettuja papereita keskenään. Näytteiden formaatio mitattiin betaradiografialla. Fosforikuvalevystä skannattu kuva analysoitiin kuva-analyysillä. Mittauksen etuna oli suuri erottelukyky, joka mahdollisti monipuolisen tunnuslukujen laskennan. Näistä esimerkkeinä olivat keskihajonta, vinous ja huipukkuus. Lisäksi määritettiin flokkikokojakaumat sekä kone- että poikkisuuntaan. Kuituorientaation määrityksessä paperinäyte revittiin kerroksiin, kerrokset skannattiin ja kuvat analysoitiin kuvankäsittelyohjelmilla. Juova- ja kuituorientaatioanalyysissä määritettiin orientaatiokulma, max/min-arvo ja anisotropia. Virtaviiva-analyysin tunnusluku oli pyörrekoko. Käytettäessä tunnuslukuna variaatiokerrointa formaatio oli parempi perälaatikolla 1 ali- ja yliperällä. Tasaperän läheisyydessä formaatio oli huonompi. Keskihajonta oli pienempi perälaatikolla 1, mutta erot perälaatikoiden välillä tasaantuivat lähellä tasaperää. Flokkikoko oli koko s/v-alueella hieman suurempi perälaatikolla 1. Virtaviiva-analyysin avulla saatiin selville, että perälaatikolla 1 valmistettujen papereiden paikallinen orientaatiovaihtelu ja pintojen toispuoleisuus oli lievempää kuin perälaatikolla 2.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mottling is one of the key defects in offset-printing. Mottling can be defined as unwanted unevenness of print. In this work, diameter of a mottle spot is defined between 0.5-10.0 mm. There are several types of mottling, but the reason behind the problem is still not fully understood. Several commercial machine vision products for the evaluation of print unevenness have been presented. Two of these methods used in these products have been implemented in this thesis. The one is the cluster method and the other is the band-pass method. The properties of human vision system have been taken into account in the implementation of these two methods. An index produced by the cluster method is a weighted sum of the number of found spots, and an index produced by band-pass method is a weighted sum of coefficients of variations of gray-levels for each spatial band. Both methods produce larger indices for visually poor samples, so they can discern good samples from the poor ones. The difference between the indices for good and poor samples is slightly larger produced by the cluster method. 11 However, without the samples evaluated by human experts, the goodness of these results is still questionable. This comparison will be left to the next phase of the project.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The number of digital images has been increasing exponentially in the last few years. People have problems managing their image collections and finding a specific image. An automatic image categorization system could help them to manage images and find specific images. In this thesis, an unsupervised visual object categorization system was implemented to categorize a set of unknown images. The system is unsupervised, and hence, it does not need known images to train the system which needs to be manually obtained. Therefore, the number of possible categories and images can be huge. The system implemented in the thesis extracts local features from the images. These local features are used to build a codebook. The local features and the codebook are then used to generate a feature vector for an image. Images are categorized based on the feature vectors. The system is able to categorize any given set of images based on the visual appearance of the images. Images that have similar image regions are grouped together in the same category. Thus, for example, images which contain cars are assigned to the same cluster. The unsupervised visual object categorization system can be used in many situations, e.g., in an Internet search engine. The system can categorize images for a user, and the user can then easily find a specific type of image.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Monet teollisuuden konenäkö- ja hahmontunnistusongelmat ovat hyvin samantapaisia, jolloin prototyyppisovelluksia suunniteltaessa voitaisiin hyödyntää pitkälti samoja komponentteja. Oliopohjaiset sovelluskehykset tarjoavat erinomaisen tavan nopeuttaa ohjelmistokehitystä uudelleenkäytettävyyttä parantamalla. Näin voidaan sekä mahdollistaa konenäkösovellusten laajempi käyttö että säästää kustannuksissa. Tässä työssä esitellään konenäkösovelluskehys, joka on perusarkkitehtuuriltaan liukuhihnamainen. Ylätason rakenne koostuu sensorista, datankäsittelyoperaatioista, piirreirrottimesta sekä luokittimesta. Itse sovelluskehyksen lisäksi on toteutettu joukko kuvankäsittely- ja hahmontunnistusoperaatioita. Sovelluskehys nopeuttaa selvästi ohjelmointityötä ja helpottaa uusien kuvankäsittelyoperaatioiden lisää mistä.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tässä tutkimuksessa toteutettiin uusi versio aikaisemmin tuotetusta työkalusta merkintöjen tekemiseksi pääasiassa silmänpohjakuviin. Tarkoituksena oli toteuttaa kuvankäsittelyyn perustuvia aputoimintoja kuvien valaistuksenkorjaamiseksi, sekä korostaa lääkärille mahdollisia diabeettiseen retinopatiaan kuuluvia löydöksiä. Kuvien annotoinnin helpottamiseksi toteutettiin kaksi menetelmää valaistuksenkorjaamiseksi: yksiulotteinen käyrämenetelmä sekä värikanavien ominaisuuksia hyödyntävä menetelmä. Kuvien annotoinin helpottamiseksi toteutettiin kuvan vihreän kanavan jakaumaan perustuva aputoiminto, joka pyrkii korostamaan mahdollisia diabeettiseen retinopatiaan kuuluvia löydöksiä.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Since the introduction of automatic orbital welding in pipeline application in 1961, significant improvements have been obtained in orbital pipe welding systems. Requirement of more productive welding systems for pipeline application forces manufacturers to innovate new advanced systems and welding processes for orbital welding method. Various methods have been used to make welding process adaptive, such as visual sensing, passive visual sensing, real-time intelligent control, scan welding technique, multi laser vision sensor, thermal scanning, adaptive image processing, neural network model, machine vision, and optical sensing. Numerous studies are reviewed and discussed in this Master’s thesis and based on a wide range of experiments which already have been accomplished by different researches the vision sensor are reported to be the best choice for adaptive orbital pipe welding system. Also, in this study the most welding processes as well as the most pipe variations welded by orbital welding systems mainly for oil and gas pipeline applications are explained. The welding results show that Gas Metal Arc Welding (GMAW) and its variants like Surface Tension Transfer (STT) and modified short circuit are the most preferred processes in the welding of root pass and can be replaced to the Gas Tungsten Arc Welding (GTAW) in many applications. Furthermore, dual-tandem gas metal arc welding technique is currently considered the most efficient method in the welding of fill pass. Orbital GTAW process mostly is applied for applications ranging from single run welding of thin walled stainless tubes to multi run welding of thick walled pipes. Flux cored arc welding process is faster process with higher deposition rate and recently this process is getting more popular in pipe welding applications. Also, combination of gas metal arc welding and Nd:YAG laser has shown acceptable results in girth welding of land pipelines for oil and gas industry. This Master’s thesis can be implemented as a guideline in welding of pipes and tubes to achieve higher quality and efficiency. Also, this research can be used as a base material for future investigations to supplement present finding.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The thesis is related to the topic of image-based characterization of fibers in pulp suspension during the papermaking process. Papermaking industry is focusing on process control optimization and automatization, which makes it possible to manufacture highquality products in a resource-efficient way. Being a part of the process control, pulp suspension analysis allows to predict and modify properties of the end product. This work is a part of the tree species identification task and focuses on analysis of fiber parameters in the pulp suspension at the wet stage of paper production. The existing machine vision methods for pulp characterization were investigated, and a method exploiting direction sensitive filtering, non-maximum suppression, hysteresis thresholding, tensor voting, and curve extraction from tensor maps was developed. Application of the method to the microscopic grayscale pulp images made it possible to detect curves corresponding to fibers in the pulp image and to compute their morphological characteristics. Performance of the method was evaluated based on the manually produced ground truth data. An accuracy of fiber characteristics estimation, including length, width, and curvature, for the acacia pulp images was found to be 84, 85, and 60% correspondingly.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The papermaking industry has been continuously developing intelligent solutions to characterize the raw materials it uses, to control the manufacturing process in a robust way, and to guarantee the desired quality of the end product. Based on the much improved imaging techniques and image-based analysis methods, it has become possible to look inside the manufacturing pipeline and propose more effective alternatives to human expertise. This study is focused on the development of image analyses methods for the pulping process of papermaking. Pulping starts with wood disintegration and forming the fiber suspension that is subsequently bleached, mixed with additives and chemicals, and finally dried and shipped to the papermaking mills. At each stage of the process it is important to analyze the properties of the raw material to guarantee the product quality. In order to evaluate properties of fibers, the main component of the pulp suspension, a framework for fiber characterization based on microscopic images is proposed in this thesis as the first contribution. The framework allows computation of fiber length and curl index correlating well with the ground truth values. The bubble detection method, the second contribution, was developed in order to estimate the gas volume at the delignification stage of the pulping process based on high-resolution in-line imaging. The gas volume was estimated accurately and the solution enabled just-in-time process termination whereas the accurate estimation of bubble size categories still remained challenging. As the third contribution of the study, optical flow computation was studied and the methods were successfully applied to pulp flow velocity estimation based on double-exposed images. Finally, a framework for classifying dirt particles in dried pulp sheets, including the semisynthetic ground truth generation, feature selection, and performance comparison of the state-of-the-art classification techniques, was proposed as the fourth contribution. The framework was successfully tested on the semisynthetic and real-world pulp sheet images. These four contributions assist in developing an integrated factory-level vision-based process control.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Steganografian tarkoituksena on salaisen viestin piilottaminen muun informaation sekaan. Tutkielmassa perehdytään kirjallisuuden pohjalta steganografiaan ja kuvien digitaaliseen vesileimaamiseen. Tutkielmaan kuuluu myös kokeellinen osuus. Siinä esitellään vesileimattujen kuvien tunnistamiseen kehitetty testausjärjestelmä ja testiajojen tulokset. Testiajoissa kuvasarjoja on vesileimattu valituilla vesileimausmenetelmillä parametreja vaihdellen. Tunnistettaville kuville tehdään piirreirrotus. Erotellut piirteet annetaan parametreina luokittimelle, joka tekee lopullisen tunnistamispäätöksen. Tutkimuksessa saatiin toteutettua toimiva ohjelmisto vesileiman lisäämiseen ja vesileimattujen kuvien tunnistamiseen kuvajoukosta. Tulosten perusteella, sopivalla piirreirrottimella ja tukivektorikoneluokittimella päästään yli 95 prosentin tunnistamistarkkuuteen.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis presents a framework for segmentation of clustered overlapping convex objects. The proposed approach is based on a three-step framework in which the tasks of seed point extraction, contour evidence extraction, and contour estimation are addressed. The state-of-art techniques for each step were studied and evaluated using synthetic and real microscopic image data. According to obtained evaluation results, a method combining the best performers in each step was presented. In the proposed method, Fast Radial Symmetry transform, edge-to-marker association algorithm and ellipse fitting are employed for seed point extraction, contour evidence extraction and contour estimation respectively. Using synthetic and real image data, the proposed method was evaluated and compared with two competing methods and the results showed a promising improvement over the competing methods, with high segmentation and size distribution estimation accuracy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Personalized nanomedicine has been shown to provide advantages over traditional clinical imaging, diagnosis, and conventional medical treatment. Using nanoparticles can enhance and clarify the clinical targeting and imaging, and lead them exactly to the place in the body that is the goal of treatment. At the same time, one can reduce the side effects that usually occur in the parts of the body that are not targets for treatment. Nanoparticles are of a size that can penetrate into cells. Their surface functionalization offers a way to increase their sensitivity when detecting target molecules. In addition, it increases the potential for flexibility in particle design, their therapeutic function, and variation possibilities in diagnostics. Mesoporous nanoparticles of amorphous silica have attractive physical and chemical characteristics such as particle morphology, controllable pore size, and high surface area and pore volume. Additionally, the surface functionalization of silica nanoparticles is relatively straightforward, which enables optimization of the interaction between the particles and the biological system. The main goal of this study was to prepare traceable and targetable silica nanoparticles for medical applications with a special focus on particle dispersion stability, biocompatibility, and targeting capabilities. Nanoparticle properties are highly particle-size dependent and a good dispersion stability is a prerequisite for active therapeutic and diagnostic agents. In the study it was shown that traceable streptavidin-conjugated silica nanoparticles which exhibit a good dispersibility could be obtained by the suitable choice of a proper surface functionalization route. Theranostic nanoparticles should exhibit sufficient hydrolytic stability to effectively carry the medicine to the target cells after which they should disintegrate and dissolve. Furthermore, the surface groups should stay at the particle surface until the particle has been internalized by the cell in order to optimize cell specificity. Model particles with fluorescently-labeled regions were tested in vitro using light microscopy and image processing technology, which allowed a detailed study of the disintegration and dissolution process. The study showed that nanoparticles degrade more slowly outside, as compared to inside the cell. The main advantage of theranostic agents is their successful targeting in vitro and in vivo. Non-porous nanoparticles using monoclonal antibodies as guiding ligands were tested in vitro in order to follow their targeting ability and internalization. In addition to the targeting that was found successful, a specific internalization route for the particles could be detected. In the last part of the study, the objective was to clarify the feasibility of traceable mesoporous silica nanoparticles, loaded with a hydrophobic cancer drug, being applied for targeted drug delivery in vitro and in vivo. Particles were provided with a small molecular targeting ligand. In the study a significantly higher therapeutic effect could be achieved with nanoparticles compared to free drug. The nanoparticles were biocompatible and stayed in the tumor for a longer time than a free medicine did, before being eliminated by renal excretion. Overall, the results showed that mesoporous silica nanoparticles are biocompatible, biodegradable drug carriers and that cell specificity can be achieved both in vitro and in vivo.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis studies the use of machine vision in RDF quality assurance and manufacturing. Currently machine vision is used in recycling and material detection and some commer- cial products are available in the market. In this thesis an on-line machine vision system is proposed for characterizing particle size. The proposed machine vision system is based on the mapping between image segmenta- tion and the ground truth of the particle size. The results shows that the implementation of such machine vision system is feasible.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Currently, laser scribing is growing material processing method in the industry. Benefits of laser scribing technology are studied for example for improving an efficiency of solar cells. Due high-quality requirement of the fast scribing process, it is important to monitor the process in real time for detecting possible defects during the process. However, there is a lack of studies of laser scribing real time monitoring. Commonly used monitoring methods developed for other laser processes such a laser welding, are sufficient slow and existed applications cannot be implemented in fast laser scribing monitoring. The aim of this thesis is to find a method for laser scribing monitoring with a high-speed camera and evaluate reliability and performance of the developed monitoring system with experiments. The laser used in experiments is an IPG ytterbium pulsed fiber laser with 20 W maximum average power and Scan head optics used in the laser is Scanlab’s Hurryscan 14 II with an f100 tele-centric lens. The camera was connected to laser scanner using camera adapter to follow the laser process. A powerful fully programmable industrial computer was chosen for executing image processing and analysis. Algorithms for defect analysis, which are based on particle analysis, were developed using LabVIEW system design software. The performance of the algorithms was analyzed by analyzing a non-moving image from the scribing line with resolution 960x20 pixel. As a result, the maximum analysis speed was 560 frames per second. Reliability of the algorithm was evaluated by imaging scribing path with a variable number of defects 2000 mm/s when the laser was turned off and image analysis speed was 430 frames per second. The experiment was successful and as a result, the algorithms detected all defects from the scribing path. The final monitoring experiment was performed during a laser process. However, it was challenging to get active laser illumination work with the laser scanner due physical dimensions of the laser lens and the scanner. For reliable error detection, the illumination system is needed to be replaced.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objectives of this master’s thesis were to understand the importance of bubbling fluidized bed (BFB) conditions and to find out how digital image processing and acoustic emission technology can help in monitoring the bed quality. An acoustic emission (AE) measurement system and a bottom ash camera system were evaluated in acquiring information about the bed conditions. The theory part of the study describes the fundamentals of BFB boiler and evaluates the characteristics of bubbling bed. Causes and effects of bed material coarsening are explained. The ways and methods to monitor the behaviour of BFB are determined. The study introduces the operating principles of AE technology and digital image processing. The empirical part of the study describes an experimental arrangement and results of a case study at an industrial BFB boiler. Sand consumption of the boiler was reduced by optimization of bottom ash handling and sand feeding. Furthermore, data from the AE measurement system and the bottom ash camera system was collected. The feasibility of these two systems was evaluated. The particle size of bottom ash and the changes in particle size distribution were monitored during the test period. Neither of the systems evaluated was ready to serve in bed quality control accurately or fast enough. Particle size distributions according to the bottom ash camera did not correspond to the results of manual sieving. Comprehensive interpretation of the collected AE data requires much experience. Both technologies do have potential and with more research and development they may enable acquiring reliable and real-time information about the bed conditions. This information could help to maintain disturbance-free combustion process and to optimize bottom ash handling system.