103 resultados para Wheel cleaning
Resumo:
Työn tavoitteena oli selvittää Suomenlahden rannalta merkittävän suuruisen alusöljyvahingon jälkeen kerättävän öljyisen jätteen käsittelymahdollisuudet ja -kapasiteetit sekä loppusijoitusmahdollisuudet ja -kapasiteetit Kymenlaakson alueen näkökulmasta. Tarkoituksena oli selvittää, missä jätteiden käsittely voidaan toteuttaa sekä, miten öljyisiä jätteitä voidaan esikäsitellä välivarastoinnin aikana puhdistuksen ja loppusijoituksen tehostamiseksi. Tutkimuksen kohteena oli sekä rannalta kerättävät kiinteät öljyiset ainekset että öljyinen merivesi. Työn alussa on perehdytty jätehuoltovastuuseen, eli kenen vastuulla öljyalusonnettomuuksissa syntyvät öljyiset jätteet ovat. Työssä on esitelty lyhyesti öljyvahinkojätteille teknisesti soveltuvien käsittelymenetelmien periaatteet ja menetelmien rajoituksia käsitellä öljyvahinkojätetteitä. Työssä on myös mainittu aiemmin Suomea koskettaneiden tai maailmalla tapahtuneiden alusöljyvahinkojen jätemääriä ja tapauksissa käytettyjä jätteiden käsittelymenetelmiä. Työ painottuu esittelemään Kymenlaakson alueen laitosten, Riihimäen Ekokem Oy Ab:n ja siirrettävien laitteistojen mahdollisuuksia käsitellä öljyisiä jätteitä. Lisäksi on esitelty öljyisen meriveden käsittelyyn soveltuvia laitoksia Kymenlaakson alueen näkökulmasta. Tietoja on kerätty puhelimitse ja sähköpostitse yritysten edustajilta vuoden 2007 aikana. Kymenlaakson alueella voidaan polttaa voimalaitosten leijupedeissä puhtaaseen polttoaineeseen sekoitettuja öljyisiä orgaanisia aineksia ja murskautuvia puhdistustyössä käytettyjä varusteita noin 10 000 t/a, homogenoitua öljyistä orgaanista ainesta voidaan polttaa Leca-soratehtaan rumpu-uunissa noin 1 200 t/a. Alueen polttokapasiteetti kasvaa, kun työn aikana rakenteilla oleva jätteenpolttolaitos valmistuu ja jätettä voidaan polttaa laitoksen arinalla. Haihtuvilla öljy-yhdisteillä pilaantuneita maa-aineksia voidaan alipainekäsitellä, jos yhdisteet eivät ole haihtuneet jo merellä. Erityisesti öljyiset maaainekset voidaan käsitellä alhaisilla öljypitoisuuksilla (öljypitoisuus noin alle 1-2 %) bitumistabiloimalla, aumakompostoimalla tai pesemällä siirrettävällä pesulaitteistolla. Kymenlaakson alueelle voidaan tuoda myös alueen ulkopuolelta siirrettäviä laitteistoja. Siirrettävät termodesorptiolaitteistot on tehty pilaantuneen maa-aineksen ensisijaiseen käsittelyyn, mutta samalla voidaan käsitellä myös muita jätejakeita, joilla on pieni partikkelikoko (alle 5-10 cm). Savaterra Oy:n siirrettävän termodesorptiolaitteiston kapasiteettiarvio on 100 000 t/a. Myös Niska & Nyyssönen Oy:llä on siirrettävä termodesorptiolaitteisto. Doranova Oy:n siirrettävän pesulaitteiston kapasiteettiarvio on 30 000- 50 000 t/a öljyistä maa-ainesta. Tutkimuksessa on ollut mukana myös Riihimäen Ekokem Oy Ab:n jätevoimala, jonka kapasiteettiarvio on 40 000-45 000 t/a erityisesti öljyisille orgaanisille aineksille, varusteille ja kuolleille eläimille. Riihimäen Ekokem Oy Ab:n ongelmajätelaitoksen rumpuuuneissa voidaan käsitellä arviolta 80 000-100 000 t/a öljyisiä maa-aineksia eli kiinteitä jätteitä, joiden partikkelikoko on suunnilleen alle 10 cm, ja 20 000 t/a nestemäisiä öljyisiä jätteitä. Työn loppupuolella on esitelty myös öljyisen meriveden käsittelyyn soveltuvia laitoksia ja niiden rajoituksia käsitellä kyseistä jätettä. Kyseisten laitosten kapasiteetit selviävät usein vasta onnettomuuden sattuessa. Kaikkiin annettuihin kapasiteettiarvioihin vaikuttaa merkittävästi jätteen koostumus. Raportin lopussa on esitelty alustava toimintasuunnitelma öljyvahinkojätteen käsittelemiseksi. Suunnitelmaan sisältyvät eri jätejakeille laaditut kaaviot, joista voi nähdä muun muassa eri jätekoostumuksille teknisesti soveltuvat käsittelymenetelmät ja käsittelymenetelmiä suorittavat yritykset. Öljyalusonnettomuuden sattuessa soveltuviin yrityksiin tulee ottaa yhteyttä ja selvittää kyseisellä hetkellä vapaana oleva käsittelykapasiteetti. Raportissa on myös esitelty käsittelykustannuksiin vaikuttavia tekijöitä ja arvioitu aiheutuvia kuljetuskustannuksia. Saadut tutkimustulokset ovat hyödynnettävissä erityisesti Kymenlaakson alueella. Tiedot käsittelymenetelmistä ja niiden rajoitteista ovat hyödynnettävissä valtakunnallisesti.
Resumo:
GMP-säädösten mukaan aktiivisten lääkeaineiden, kriittisten lääkeaineintermediaattien ja lääkeapuaineiden valmistusprosessit pitää validoida. Validointityöhön kuuluu oleellisesti tuotantolaitteiden kvalifiointi ja prosessin validointi. Käytännössä tuotantolaitteiden kvalifiointi toteutetaan tekemällä laitteille suunnitelmien tarkastus (DQ), asennus- ja käyttöönottotarkastus (IQ), toiminnan testaus (OQ) sekä suorituskykytestit (PQ). Tuotantolaitteiden kvalifiointiin kuuluu myös laitteiden asianmukaisten kalibrointi-, kunnossapito- ja puhdistusohjeiden sekä työ- ja toimintaohjeiden (SOP:ien) laatiminen. Prosessin validoinnissa laaditaan dokumentoidut todisteet siitä, että prosessi toimii vakaasti ja tuotteelle asetetut vaatimukset täyttyvät johdonmukaisesti. GMP-tuotantolaitteiden kvalifiointiin ja lääkevalmistusprosessin validointiin on laadittu erilaisia GMP-säädöksiä noudattavia yleisiä validointiohjeita, kuten PIC/S:n ja FDA:n ohjeet kvalifioinnista ja validoinnista. IVT/SC on laatinut yksiselitteiset validointistandardit validointityön selventämiseksi. Validoinnin tilastolliseen tarkasteluun on käytettävissä GHTF:n laatimat tilastolliset validointimenetelmät. Yleensä tuotantolaitteiden kvalifiointi ja prosessin validointi tehdään ennen lääkevalmisteen kaupallisen tuotannon aloittamista. Kvalifiointi- ja validointityö voidaan tehdä kuitenkin myös tuotannon yhteydessä (konkurrentisti) tai retrospektiivisesti käyttäen hyväksi valmistettujen tuotantoerien prosessitietoja. Tässä työssä laadittiin Kemira Fine Chemicals Oy:n Kokkolan GMP-tuotantolinjan lääkeaineintermediaattiprosessin validoinnin yleissuunnitelma (VMP), joka sisältää sekä tuotantolaitteiden kvalifiointisuunnitelman että prosessin validointisuunnitelman. Suunnitelmissa huomioitiin tuotantolaitteiden aikaisempi käyttö muuhun hienokemikaalituotantoon ja tuotantolinjan muuttaminen GMP-vaatimusten mukaiseksi. Työhön kuului myös tuotantolaitteiden kvalifiointityön tekeminen laaditun suunnitelman mukaisesti.
Resumo:
Tässä diplomityössä tutkittiin eri tyyppisten viirojen vedenpoisto-ominaisuuksia ja markkeeraavuutta HSRT-laitteistolla. Tarkoitus oli myös selvittää muodostuvan paperiarkin rakennetta ja HSRT-laitteiston soveltuvuutta viiravertailuun. Työn kirjallisuusosassa käsitellään märkäviiroja sekä niiden valmistamista, valintaa eri kriteerein, kulumista ja puhdistamista. Lisäksi käsitellään viirojen markkeeraavuutta ja viiraosan vedenpoistoa. Sekä vedenpoistokyvyn että markkeeraavuuden osalta tulokset olivat niin tasaiset eri suureiden suhteen, ettei etenkään sisäviirojen välillä saatu näkyviin selviä eroja. Markkeeraavuuden osalta laitteiston ominaisuutena näyttäisi olevan se, ettei sisäviiran puoleinen markkeeraus näy arkissa. Tästä syystä vertailut DPCJ-laitteen ja koepaperikoneen tuloksiin olivat mahdottomia. Sen sijaan ulkoviiran puolella markkeeraus oli havaittavissa useimmissa tapauksissa. Tutkimuksen perusteella vaikuttaa kuitenkin siltä, ettei HSR-Tester sovellu viirojen vedenpoistonkyvyn ja markkeeraavuuden vertailuun.
Resumo:
Tässä tutkimuksessa selvitetään, mitä muutoksia vannesahalinjan koneisiin tulee tehdä, jotta syöttönopeutta voidaan nostaa. Lisäksi työn perusteella on onnistuttu sahaamaan tuotannossa ohuemmalla terärungolla samalla mittatarkkuudella kuin aikaisemmin paksummalla terärungolla. Työssä on kartoitettu kyseessä olevan vannesahalinjan todennäköisimmät pullonkaulat nopeutta nostettaessa. Lisäksi on tarkasteltu mittauksin eräiden kriittisten koneiden käyttäytymistä sahauksen aikana. Mittausten perusteella on tehty ehdotukset tarvittaville konstruktiomuutoksille, jotta sahaus korotetulla nopeudella onnistuu hyvällä mittatarkkuudella. Tutkimuksen aikana on kehitetty mittausjärjestelmä, jolla vannesahan teräpyörien muoto voidaan mitata ja siirtää tietokoneelle myöhempää tarkastelua ja arkistointia varten.
Resumo:
Tämän diplomityön tavoitteena oli selvittää levypyörien keskiöiden valmistuksen ja raskaiden puristintöiden kehittämisen vaihtoehdot. Työn teoriaosassa on esitelty levypyörien keskiöiden valmistuksessa käytettäviä meistoteknisiä menetelmiä ja puristintyövaiheen materiaalinkäsittelyn sekä työkalujen käsittelyn ja vaihdon kehittämisratkaisuja. Lisäksi on käsitelty teollisuusrobottien käyttöä puristintöiden kappaleenkäsittelyssä sekä puristintöiden työturvallisuutta. Tuotannon kehittämistarpeiden löytämiseksi työssä analysoitiin keskiötuotannon nykytilaa. Analyysiin perusteella tutkittiin vaihtoehtoisten valmistusmenetelmien käyttöä keskiöiden valmistuksessa sekä puristinosaston layoutin kehittämismahdollisuuksia. Lisäksi selvitettiin erilaisten työkalujen ja työkappaleiden käsittelyssä käytettävien järjestelmien soveltuvuutta raskailla epäkeskopuristimilla suoritettaviin levytöihin. Vaihtoehtoisten valmistusmenetelmien käytön kannattavuutta arvioitiin selvittämällä kappalekohtaiset valmistuskustannukset eri menetelmiä käytettäessä. Puristintöiden kehittämisvaihtoehtojen kannattavuutta selvitettiin alustavasti arvioimalla muutamien työkalujen ja työkappaleiden käsittelyratkaisujen vaatimien investointien suuruutta sekä investointien edellyttämiä tuottoja. Työssä selvitettiin levypyörien keskiöiden valmistuksen ja raskailla epäkeskopuristimilla suoritettavien levytöiden kehittämistarpeita ja kehittämisvaihtoehtoja. Tehdyn selvityksen ja työssä esitettyjen kehitysehdotusten perusteella voidaan tehdä kehityssuunnitelma levypyörien keskiöiden valmistuksen ja puristintyövaiheen kehittämiseksi havaittujen kehitystarpeiden mukaisesti.
Resumo:
Tämä työ on osa tutkimusprojektia, jonka tarkoituksena on kehittää uudentyyppinen kaasutustekniikkaan perustuva kiinteistöjen lämmitysjärjestelmä. Työ on tehty osaksi kirjallisuustutkimuksena käyttämällä hyödyksi alalla tehtyjä tutkimuksia ja kirjallisuutta. Kirjallisuustutkimuksen tavoitteena oli luoda yhtenäinen tietopaketti lämmitysjärjestelmän kehityksen tueksi. Työn kokeellisen osion tavoitteena oli tutkia lämmitysjärjestelmän kaasuttimen prototyypin toimintaa ja selvittää sen käyttöön liittyviä ongelmia. Kirjallisuusosiossa käsitellään kaasutuksen vaiheita: alkulämpeneminen ja kuivuminen, syttyminen, pyrolyysi sekä jäännöshiilen palaminen ja kaasutus. Varsinkin pyrolyysiprosessin tunteminen on merkittävää, kun halutaan parantaa biomassan poltto- ja kaasutusprosessien suunnittelua. Lisäksi kirjallisuusosiossa käsitellään kaasutuksessa syntyvän tuotekaasun ominaisuuksia: koostumus, lämpöarvo, tiheys ja palamisominaisuudet. Tuotekaasun ominaisuudet vaihtelevat suuresti kaasutusprosessista ja -olosuhteista sekä polttoaineesta riippuen. Tuotekaasun kohdalta käsitellään myös sen käyttökohteita. Perinteisesti kaasutuksen tuotekaasua käytetään lämmöntuotantoon, mutta tulevaisuuden haasteena on tuotekaasun käyttö kaasuturbiineissa sähköntuotantoon. Tuotekaasun käyttöä laajemmin rajoittaa sen sisältämät epäpuhtaudet. Tämän vuoksi kirjallisuusosiossa käsitellään myös tuotekaasun puhdistusmenetelmiä ja sen poltossa syntyvien päästöjen vähentämiskeinoja. Kokeellisessa osiossa suoritettiin puupellettien kaasutuskokeita TTKK:n Energia- ja prosessitekniikan laitoksen raskaaseen laboratorioon rakennetulla kaasutusreaktorilla. Kaasutuskokeiden avulla löydettiin kaasutusreaktorin toiminnan ongelmakohdat ja pystyttiin aloittamaan lämmitysjärjestelmän jatkokehitys.
Resumo:
Tässä diplomityössä on selvitetty hiilestä, jätteestä tai biopolttoaineesta kaasutetun kaasun märkä- ja kuivapuhdistusta. Kaasutuskaasun puhdistuksella voidaan likainen ja jopa ongelmallinen aines muuttaa tai puhdistaa sellaiseksi ympäristökelpoiseksi polttoaineeksi, että sitä voidaan käyttää nykyisissä kulutuskohteissa ongelmitta. Lisäkannustusta kaasutuskaasun puhdistus saa uusista EU-direktiiveistä, jotka tulevat rajoittamaan jätteiden läjittämistä kaatopaikoille. Loppusijoitukseen meneviä jätevirtoja voidaan energiakäytöllä pienentää huomattavasti.Työ on tehty PVO-Engineering Oy:n voimalaitostekniikan osastolle kevään 2001 aikana. Työn tavoitteena oli kasvattaa yrityksen tietomäärää kaasutuskaasun puhdistuksen osalta. Lisäksi pyrittiin selvittämään uuden keraamisen pussisuodatinmateriaalin käyttöä kaasutuskaasun kuumakuivasuodatuksessa. Työn ensimmäisessä osassa esitetään kaasutuskaasun koostumuksen ja syntymisen lisäksi tämän työn lähtökohdat ja tavoitteet. Toisessa osassa selvitetään kaasulle asetettavia vaatimuksia eri käyttötapojen mukaan. Kolmannessa ja neljännessä osassa selvitetään puhdistettavien komponenttien käyttäytymistä ja sopivia puhdistusmenetelmiä.Kaasutuskaasun puhdistustekniikka vaihtelee paljonkin riippuen kaasun käyttökohteesta. Eroja syntyy käyttökohteen asetettamista vaatimuksista polttoaineelle, kaasutettavan polttoaineen koostumuksesta ja laadun vaihtelusta. Puhdistuksessa keskitytään kloori -, rikki -, typpi - ja metalliyhdisteiden poistamiseen kaasuvirrasta. Erotuskyvyllä arvioituna eri puhdistusmenetelmistä tehokkaimpia ovat pesurisähkösuodatinyhdistelmät. Niiden suuret jätemäärät ovat kuitenkin iso ongelma. Kuumakuivapuhdistuksessa pyritään kehittämään menetelmä, jossa syntyvät jätemäärät ovat pieniä ja puhdistustulos on riittävä. Puhdistuksen apukeinona käytetään usein erilaisia katalyyttejä. Tunnetuimpia ovat erilaiset kalsiumpohjaiset materiaalit ja mineraalit. Katalyyteillä voidaan tehostaa tarpeellisia kemiallisia reaktioita puhdistusprosessissa. Kaikki puhdistukseen liittyvät ongelmat ovat kooltaan niin suuria, että niiden ratkaisemiseksi on tulevaisuudessa tehtävä lujasti töitä. Markkinanäkymät toimivalle puhdistustekniikalle ovat nykymaailmassa hyvät. Niinpä tuotekehitykseen laitetut panokset voivat tulevaisuudessa olla yritykselle kullan arvoisia.
Resumo:
Työn tavoitteena oli kehittää prosessia fraktioinnista monikerrosperälaatikolle painopaperilajeilla. Tarkoituksena oli selvittää koeajojen avulla sihti- ja pyörrepuhdistusfraktioinnin soveltuvuutta paperin kerrostuksen kannalta. Työssä vertailtiin keskenään fraktiointimenetelmiä ja niiden yhdistelmiä. Tehtävänä oli prosessikonseptin kehittäminen eri prosessikytkennöistä ja –ratkaisuista simuloinnin avulla. Kirjallisuusosassa tutustuttiin analysoiden kirjallisuusviitteiden perusteella massan fraktiointiin ja paperin kerrostamiseen sekä fraktiointikerrostetun rainan karakterisointiin. Tavoitteiden saavuttamiseksi esikokeena suoritettiin pilotkoeajo hienopaperimassalla, jossa tutkittiin pääasiassa fraktiointitulosta. Toinen koeajo suoritettiin LWC-paperilla, jossa koekonekonsepti oli optimaalisempi kerrostuksen kannalta ja fraktiointitulos voitiin linkittää paperin laatusuureisiin. LWC-koeajossa fraktioidulla massalla tehtiin laboratoriomittakaavassa monikerrosarkkimuottikokeita, joiden tuloksilla pyrittiin vahvistamaan koeajosta saatuja tuloksia ja fraktioinnnin potentialia. Prosessikonseptin kehittämiseksi rakennettiin seitsemän simulointimallia eri kytkennöistä. Malleja verrattiin keskenään täyteaine- ja kuitujakeiden fraktiointikyvyn perusteella. Koeajojen avulla selvitettiin fraktioinnin kannalta optimaaliset prosessimuuttujat. Fraktiointikerrostuksella parannettiin paperin z-suuntaista lujuutta ja etenkin pyörrepuhdistinfraktioinnilla pintojen sileyttä. Fraktiointikerrostuksella voitiin parantaa paperin täyteainejakaumaa. Kokeiden perusteella huomattiin, että kukin paperilaji tarvitsee erilaisen fraktiointijärjestelyn riippuen käytetystä massasta ja täyteaineesta.
Resumo:
Työn tarkoituksena oli selvittää Alstom Finland Oy:n pääasiakkaiden ympäristö-lupatilanne sekä tarkastella, miten Alstomin toimittamat hiukkastenpuhdistuslait-teet täyttävät muuttavat lainsäädännön vaatimukset. Lisäksi työssä arvioitiin lai-tosten hiukkaspäästöjen vähentämisestä syntyvää savukaasunpuhdistuslaitteiden investointitarvetta. Työn teoriaosuus sisältää katsauksen ympäristölupakäytäntöön sekä Valtioneu-voston asetuksiin, jotka koskevat laitosten hiukkaspäästöjä. Lisäksi työssä on kä-sitelty parhaan käytettävissä olevan tekniikan mukaisia hiukkaspäästörajoja ja tekniikoita sekä hiukkasten muodostumista että raskasmetallien sitoutumista hiukkasiin. Kaikkiaan työssä mukana olevia laitoksia oli 49, joista tarkemmin tarkasteltiin 12 laitosta. Suurin osa laitoksista ei ollut saanut tai hakenut ympäristönsuojelulain mukaista ympäristölupaa, joten niillä on velvollisuus hakea lupaa siirtymäsään-nöksen mukaisesti vuoden 2004 loppuun mennessä. Tarkemmassa tarkastelussa olevien laitosten hiukkaspäästömittaustuloksia vertailtiin nykyisiin sekä uu-siin/oletettuihin ympäristölupien hiukkaspäästörajoihin. Tarkastelussa mukana olevasta seitsemästä soodakattilalaitoksesta, joilla ei vielä ollut uutta ympäristölu-paa, 43 % ylitti arvioidun uuden luparajan 50 mg/m3(n):ssa ja kolmesta meesauu-nia käyttävästä laitoksesta yksi sekä viidestä muusta kattilasta kaksi.
Resumo:
Työssä tutkittiin uuden ShortFlowÔ-konseptin eri osa-alueiden toimivuutta paperikoneen lyhytkierrossa. Prosessin sekoituspumppuna perinteinen keskipakopumppu korvataan potkuri-pumpulla, joten työssä selvitettiin uudentyyppisen pumpun kavitointirajat, säädettävyys ja sen soveltuminen suunniteltuun tehtävään ja toiminta-alueeseen. Prosessiin kuuluu myös uudentyyppinen viirakaivo, josta selvitettiin sen kyky poistaa ilmaa ja virtauskäyttäytyminen kaivossa. Hienopaperikoneen osalta kartoitettiin prosessiin liittyviä riskejä ja ShortFlowÔ-lyhytkiertoprosessin kannattavuutta investointina. Työn kirjallisessa osassa on käsitelty lyhytkiertoa eri osa-alueittain. Aluksi on lyhytkierron yleisempi tarkastelu, jossa on selvitetty lajittelua, ilmanpoistoa ja pumppauksia. Erityisempää huomiota on kiinnitetty ShortFlowÔ-lyhytkiertoprosessiin liittyviin erityispiirteisiin joita ovat sakeamassalajittelu, täyteaineet paperitehtaalla, hylky ja virtausten sekoittuminen. Sekoituspumpun osalta on käsitelty myös kavitointia hieman tarkemmin. Työn kokeellisessa osassa suunniteltiin prosessin koelaitteisto, joka myös koeajettiin. Potkuripumpun koeajossa määritettiin potkuripumpun toiminta-alue ja säädettävyys. Pumpun todettiin sekoittavan ja ilman vaikutus potkuripumpun ominaisuuksiin todettiin merkityksettömäksi pumpun toiminta-alueella. Viirakaivon koeajossa selvisi, että viirakaivo poistaa ilmaa suunnittelualueella ja kaivolle löytyi muoto, jossa virtauskäyttäytyminen viirakaivossa eri laskeutumisnopeuksilla on mahdollisimman häiriötöntä. Hienopaperikoneen osalta riskien kartoituksessa selvisi, ettei täyteaine aiheuta ongelmia ja että päällystelaattaa sisältävä hylky on lajiteltava ennen lyhytkiertoa. ShortFlowÔ-lyhytkiertoprosessi oli edullisin sekä käyttö- että investointikustannuksiltaan.
Resumo:
Kirjallisuusosassa käsitellään paperi- ja kartonkikoneiden eri vesijärjestelmiä, vedenkäytön vähentämistä ja sen vaikutusta prosessiin. Mikrobiologiaa, mikrobien aiheuttamia prosessiongelmia, mikrobien torjuntaa ja simulointia on myös käsitelty kirjallisuusosassa. Kokeellisessa osassa laadittiin Kartonkikone 1:n massa- ja vesijärjestelmän mikrobiologisen puhtauden simulointimalli Balas-prosessisimulointiohjelmalla. Kartongin mikrobiologinen puhtaus määritettiin kokonaispesäkelukuna. Kokeellinen osa sisälsi pilot-mittakaavan suodatinkoeajoja, joissa määritettiin tarvittavat erotusparametrit simulointimallille, selvitettiin Dynasand-hiekkasuodattimen soveltuvuus suihkuvesien puhdistukseen, Dynadisc-kiekkosuodattimen käyttökelpoisuus kiertoveden puhdistukseen kiertovesisuodattimena ja hiekkasuodattimien esisuodattimena sekä UV-reaktorin soveltuvuus suodatettujen vesien desifiointiin. Simulointimallilla tarkasteltiin eri prosessivaihtoehtojen vaikutus kartongin mikrobiologiseen puhtauteen. Suihkuvesien puhdistaminen hiekkasuodattimilla alentaa kokonaispesäkelukua vain vähän. Koneen ajettavuus paranee suihkuputkien roskaryöppyjen ja viiraosan limoittumisen vähenemisen takia. Kiertovesijärjestelmän pelkkä jakaminen hylkyprosessi- ja sakeudensäätövedeksi aiheuttaa kokonaispesäkeluvun kasvun prosessista poistettavien vesien puhdistumisen takia. Kokonaispesäkeluku minimoidaan poistamalla ylimääräinen vesi hylkysaostajan suodoksena. Suodatettua hylkysaostajan suodoksen ja viiraveden seosta käytetään sekä sakeudensäätö- että hylkyprosessivedeksi. Hylkymassalla on dominoiva vaikutus kokonaispesäkelukuun. Suurin vähennys kokonaispesäkeluvussa saadaan estämällä mikrobikasvu hylkymassassa. Tämä voidaan tehdä kuumentamalla hylkymassa 80 °C:n höyryllä. Suodatuskoeajojen perusteella Dynasand-hiekkasuodattimella voidaan puhdistaa pisaralämmönvaihtimelta saatavaa lämmintä suihkuvettä. Esisuodatettua kiertovettä voidaan puhdistaa Dynasand-hiekkasuodattimella viiran johtotelojen suihkuvedeksi. Dynadisc-kiekkosuodatinta voidaan käyttää hiekkasuodattimen esisuodattimena ja kiertovesisuodattimena. UV-säteily poistaa tehokkaasti mikrobeja suodatetuista vesistä.
Resumo:
Polyuretaanielastomeerit ovat jaksottaisia sekapolymeerejä, jotka muodostuvat vuoroittaisista joustavien ketjujen segmenteistä ja hyvin polaarisista kovista segmenteistä. Kemiallinen rakenne ja ominaisuudet riippuvat käytetyistä reaktiokomponenteista. Pehmeän segmentin muodostaa polyoli ja kovan segmentin muodostaa yleensä di-isosyanaatti ja ketjunjatkaja. Polyuretaanielastomeerien valmistus tapahtuu valamalla, jolloin reaktiokomponentit ovat nestemäisiä. Työssä tutkittiin kahta perusmateriaalia ja yhden lisäaineen vaikutusta niiden ominaisuuksiin. Erityisesti kiinnitettiin huomiota dynaamisiin ja mekaanisiin ominaisuuksiin ja verrattiin aineita keskenään. Käytettyjä karakterisointimenetelmiä olivat kontaktikulmamittaukset, DMTA-mittaukset, dynaaminen rasittaminen pyörityslaitteella, elektronimikroskopia, hydrolyysitesti, vetotesti ja kulutustesti. Tutkittujen materiaalien pääasiallinen käyttökohde on pyörä- tai telapinnoitteena. Työn aikana kehitettiin pyörityslaite, jolla voitiin tutkia pinnoitemateriaalin käyttäytymistä halutuissa rasitusolosuhteissa. Lisäaineen vaikutus dynaamisiin ominaisuuksiin oli negatiivinen tai olematon, sillä DMTA-testien perusteella lisäaine kasvatti materiaalien häviötekijää (tan d). Pyöritystestien perusteella lisäaineella ei ollut vaikutusta hystereesiin eli pinnoitemateriaalin lämpenemiseen testin aikana. Uusi tutkittu materiaali osoittautui dynaamisissa kokeissa paremmaksi kuin vanha tuotantomateriaali. Lisäaine kasvatti molempien tutkittujen aineiden pintaenergiaa kontaktikulmamittausten perusteella. Tuotantoaineen vetomurtolujuus kasvoi lisäaineen vaikutuksesta, mutta uuden aineen vetomurtolujuus pieneni. Lisäaineella oli lievä hydrolyysiltä suojaava vaikutus tutkituilla perusaineilla. Uusi tutkittu perusmateriaali sieti hydrolyysiä paremmin kuin tuotantomateriaali, koska sen valmistuksessa käytettiin polyeetteripolyolia ja tuotantomateriaalissa polyesteripolyolia.
Resumo:
Tässä diplomityössä tutkittiin kalvosuodatuksen esikäsittelymenetelmiä ja kalvonpesua. Työn kirjallisuusosassa käsitellään vuon alenemiseen vaikuttavia tekijöitä, esikäsittelymenetelmiä ja kalvonpesua. Kokeellisessa osassa tutkittiin kemiallisten esikäsittelyjen vaikutusta vuon alenemiseen paperitehtaan happaman kiertoveden kirkkaan suodoksen kalvosuodatuksessa. Esikäsittelykemikaalit olivat ympäristöystävällisiä ja paperinvalmistusprosessiin soveltuvia. Lisäksi tutkittiin kalvonpesuaineiden pesutehokkuuksia. Tutkitut esikäsittelyaineet olivat mikrokiteinen kitosaani, karboksimetyyliselluloosa, selluloosa- ja puukuitu sekä kaupallinen antiskalantti. Pesuaineista tutkittiin kolmea kaupallista kalvonpesuainetta, yhtä kalvopesun tehostusainetta sekä peretikkahappoa. Kokeet tehtiin kahdella laboratoriomittakaavaisella kalvosuodattimella. Kalvoina käytettiin kahta nanosuodatus- ja yhtä ultrasuodatuskalvoa. Vuon alenemista tutkittiin suodatuksen aikaisena alenemisena ja vesivuohon verrattavana alenemisena. Esikäsittelyjen vaikutusta erotustehokkuuteen tutkittiin ioni-, johtokyky-, orgaanisen hiilen kokonaispitoisuus-, sokeri-, sameus- ja ligniinireduktioilla. Lisäksi määritettiin kalvon likaantuminen suodatuksen aikana vesivuon määrityksillä ennen ja jälkeen suodatuksen. Pesutehokkuus määritettiin vesivuon määrityksillä suodatuksen jälkeen ja pesun jälkeen. Kitosaani- ja karboksimetyyliselluloosakäsittelyillä oli vuon alenemista estävä vaikutus hydrofiilisellä nanosuodatuskalvolla suodatettaessa. Kitosaanikäsittelyn 5 g/dm3:n ja karboksimetyyliselluloosakäsittelyn 2 g/ dm3:n annostuksella vuot alentuivat suodatuksen aikana 8 %-yksikköä vähemmän kuin ilman esikäsittelyä. Puukuitukäsittely stabiloi 0,1 g/dm3:n annostuksella saman kalvon vuota, kun kiintoainetta ei poistettu syötöstä. Hydrofobisen nanosuodatuskalvon vuon alenemista ehkäisivät puu- ja selluloosakuitukäsittelyt sekä karboksimetyyliselluloosakäsittely. Karboksimetyyliselluloosakäsittely vähensi vuon alenemista 25 %-yksikköä ja puukuitukäsittely 13 %-yksikköä. Hydrofiilisellä ultrasuodatuskalvolla vuon aleneminen oli pientä ilman esikäsittelyä. Reduktioihin esikäsittelyt vaikuttivat parhaiten ultrasuodatuskalvolla. Kitosaanikäsittely nosti 1 g/dm3:n annostuksella alumiinireduktion 50 %:sta 96 %:iin ja 5 g/dm3:n annostuksella rautareduktion 30 %:sta 55 %:iin. Karboksyylimetyyliselluloosakäsittelyt vaikuttivat parantavasti mangaanin, magnesiumin, raudan ja kalsiumin reduktioihin. Optimi karboksyylimetyyliselluloosa-annostus oli 2 g/dm3. Merkittävin reduktion nousu oli kalsiumilla, jonka reduktio nousi esikäsittelyllä 4 %:sta 57 %:iin. Reduktiota nostava mekanismi oli kalvon pinnalle muodostuva sekundaarikerros. Pesuaineista tehokkain oli entsyymiä sisältävä kalvonpesuaine. Suurin vaikutus sillä oli hydrofobisen nanosuodatuskalvon pesussa. Optimiannostuksella (0,5 %) kalvon vesivuo pesun jälkeen oli 114 % pesua edeltäneestä vesivuosta. Muut kaupalliset pesuaneet oli tehokkaita hydrofiilisille kalvoille. Peretikkahappo oli yksittäisenä pesuaineena heikkotehoinen.
Resumo:
Biokaasua syntyy mm. kaatopaikoilla, jätevedenpuhdistamoilla ja biokaasureaktoreissa, kun bakteerit hajottavat orgaanista ainesta hapettomissa olosuhteissa. Biokaasun tärkein ainesosa on metaani, jota biokaasussa on tyypillisesti hieman yli puolet. Muu osa biokaasusta on pääosin hiilidioksidia, mutta se sisältää myös paljon erilaisia epäpuhtauksia, jotka vaikeuttavat biokaasun hyötykäyttöä. Suomeen tuotava maakaasu puolestaan on lähes puhdasta metaania. Tämä diplomityö suoritettiin Gasum Oy:lle ja sen tarkoituksena oli tutkia millaisia toimenpiteitä vaaditaan, jotta biokaasua voidaan syöttää Suomen maakaasuverkostoon. Työssä suoritettiin katsaus biokaasun puhdistus- ja jalostusmenetelmiin, joilla biokaasun sisältämät epäpuhtaudet poistetaan ja metaanipitoisuus nostetaan lähes maakaasun tasolle hiilidioksidia poistamalla. Lisäksi työssä simuloitiin biokaasun syöttöä maakaasuverkostoon eri koostumuksin ja maakaasuverkoston eri osista näin syntyvän seoskaasun ominaisuuksien määrittämiseksi simulointiohjelma Simonen avulla. Työssä myös etsittiin parasta keinoa jäljittää maakaasuverkoston kaasun laatua ja hallita energiatasetta, kun kaasun laatu ei enää ole kaikkialla sama. Lisäksi suoritettiin lyhyt katsaus biokaasusyötön vaikutuksista päästökauppaan ja maakaasuverkoston järjestelmävastaavan tehtävään. Työssä tultiin siihen tulokseen, että biokaasun syöttö maakaasuverkostoon on mahdollista vain, kun biokaasu puhdistetaan ja jalostetaan. Tällöin biokaasun ja maakaasun seos täyttää maakaasuverkoston kaasulle asetetut laatukriteerit, vaikka yksin biokaasu ei sitä tee. Parhaaksi keinoksi hallita maakaasun ja biokaasun laatua todettiin kaasukromatografien käyttö.
Resumo:
Rakennustyömaa on yksi vaarallisimpia ja työolosuhteiltaan haastavimpia työpaikkoja. Sisävalmistusvaiheessa ongelmaksi muodostuu töiden tuottama pöly ja melu. Työmaan epäjärjestys ja likaisuus lisäävät tapaturmariskiä. Pölytöntä rakennustyömaata ei ole olemassa ja tästä syystä pölynhallinta muodostuu merkittäväksi tekijäksi pölyn leviämisen rajoittamisessa. Työn tavoitteena oli tutkia teknisiä pölynhallintakeinoja, joilla voidaan vähentää henkilökohtaisen suojauksen tarvetta rakennustyömailla. Pölynhallintaan työmailla voidaan vaikuttaa työtapojen ja -menetelmien valinnalla, töiden vaiheistuksella, kohdepoistoilla, osastoinnilla ja alipaineistuksella. Työssä oli tarkoitus myös verrata ja tutkia erilaisten ja eri työvaiheisiin tarkoitettujen pölynhallintalaitteistojen toimintaa ja niiden toimivuutta pölynhallinnassa. Tämä tutkimus toteutettiin Savocon Oy:n Kuopioon rakennettavan Turontähden rakennustyömaalla huhti- ja toukokuussa 2008. Tutkimusten perusteella tekniset pölynhallintakeinot toimivat kohtalaisen hyvin. Hiomalaitteissa pölynhallinta on tekninen ominaisuus, mutta sen toimivuus riippuu myös siitä, osaako työntekijä hyödyntää pölynhallintaa oikealla tavalla. Toimintaan vaikuttaa se, osaavatko laitteen käyttäjät asettaa imutehon sellaiseksi, että se on riittävän suuri poistamaan pölyn, mutta ei liian suuri haitatakseen työntekoa ja saaden aikaan heikkoa työnjälkeä. Oikeat laiteasetukset opitaan kokeilemalla. Imutehon säätömahdollisuus on erilaisten pintatasoitteiden myötä erityisen tärkeä laiteominaisuus. Timanttihiomalaitteilla saavutetut pölynpoistotehokkuudet olivat kaikki yli 97 prosenttia, kun niiden tehoa verrattiin ilman pölynpoistoa tapahtuvaan timanttihiontaan. Timanttihiontaa ei suositella tehtäväksi ilman pölynpoistotekniikkaa, sillä pölyntuotto on suurta ja pölypitoisuudet nousevat nopeasti hyvin suuriksi ja työntekijöiden altistus pölylle kasvaa. Ilmanpuhdistimien tehot riittivät pienen tilan ilman puhdistamiseen, mutta suurissa tiloissa ja suurissa pitoisuuksissa teho jäi riittämättömäksi. Oikein mitoitettuina ilmanpuhdistimia voidaan suositella kohdepoistolla toimivien laitteiden lisäksi huonetilaan puhdistamaan vähäiset hiukkaspäästöt, joita laitteista tulee. Teollisuusimurien valinnassa huomio tulee kiinnittää moottorin imutehoon, moottorin jäähdytyksen järjestelyyn, pölypussin materiaaliin ja pölypussin tyhjennysmekanismiin. Näillä on suuri merkitys siivoustyön pölyttömämpään lopputulokseen. Tämän työn käyttö markkinointitarkoituksessa ilman tekijän lupaa on kielletty.