95 resultados para Systems of systems


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this master’s thesis is to develop an algorithm to calculate the cable network for heat and power station CHGRES. This algorithm includes important aspect which has an influence on the cable network reliability. Moreover, according to developed algorithm, the optimal solution for modernization cable system from economical and technical point of view was obtained. The conditions of existing cable lines show that replacement is necessary. Otherwise, the fault situation would happen. In this case company would loss not only money but also its prestige. As a solution, XLPE single core cables are more profitable than other types of cable considered in this work. Moreover, it is presented the dependence of value of short circuit current on number of 10/110 kV transformers connected in parallel between main grid and considered 10 kV busbar and how it affects on final decision. Furthermore, the losses of company in power (capacity) market due to fault situation are presented. These losses are commensurable with investment to replace existing cable system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Broadcasting systems are networks where the transmission is received by several terminals. Generally broadcast receivers are passive devices in the network, meaning that they do not interact with the transmitter. Providing a certain Quality of Service (QoS) for the receivers in heterogeneous reception environment with no feedback is not an easy task. Forward error control coding can be used for protection against transmission errors to enhance the QoS for broadcast services. For good performance in terrestrial wireless networks, diversity should be utilized. The diversity is utilized by application of interleaving together with the forward error correction codes. In this dissertation the design and analysis of forward error control and control signalling for providing QoS in wireless broadcasting systems are studied. Control signaling is used in broadcasting networks to give the receiver necessary information on how to connect to the network itself and how to receive the services that are being transmitted. Usually control signalling is considered to be transmitted through a dedicated path in the systems. Therefore, the relationship of the signaling and service data paths should be considered early in the design phase. Modeling and simulations are used in the case studies of this dissertation to study this relationship. This dissertation begins with a survey on the broadcasting environment and mechanisms for providing QoS therein. Then case studies present analysis and design of such mechanisms in real systems. The mechanisms for providing QoS considering signaling and service data paths and their relationship at the DVB-H link layer are analyzed as the first case study. In particular the performance of different service data decoding mechanisms and optimal signaling transmission parameter selection are presented. The second case study investigates the design of signaling and service data paths for the more modern DVB-T2 physical layer. Furthermore, by comparing the performances of the signaling and service data paths by simulations, configuration guidelines for the DVB-T2 physical layer signaling are given. The presented guidelines can prove useful when configuring DVB-T2 transmission networks. Finally, recommendations for the design of data and signalling paths are given based on findings from the case studies. The requirements for the signaling design should be derived from the requirements for the main services. Generally, these requirements for signaling should be more demanding as the signaling is the enabler for service reception.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of the work has been to study why systems thinking should be used in combination with TQM, what are the main benefits of the integration and how it could best be done. The work analyzes the development of systems thinking and TQM with time and the main differences between them. The work defines prerequisites for adopting a systems approach and the organizational factors which embody the development of an efficient learning organization. The work proposes a model based on combination of an interactive management model and redesign to be used for application of systems approach with TQM in practice. The results of the work indicate that there are clear differences between systems thinking and TQM which justify their combination. Systems approach provides an additional complementary perspective to quality management. TQM is focused on optimizing operations at the operational level while interactive management and redesign of organization are focused on optimization operations at the conceptual level providing a holistic system for value generation. The empirical study demonstrates the applicability of the proposed model in one case study company but its application is tenable and possible also beyond this particular company. System dynamic modeling and other systems based techniques like cognitive mapping are useful methods for increasing understanding and learning about the behavior of systems. The empirical study emphasizes the importance of using a proper early warning system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This dissertation describes a networking approach to infinite-dimensional systems theory, where there is a minimal distinction between inputs and outputs. We introduce and study two closely related classes of systems, namely the state/signal systems and the port-Hamiltonian systems, and describe how they relate to each other. Some basic theory for these two classes of systems and the interconnections of such systems is provided. The main emphasis lies on passive and conservative systems, and the theoretical concepts are illustrated using the example of a lossless transfer line. Much remains to be done in this field and we point to some directions for future studies as well.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study compares different electric propulsion systems. Results of the analysis of all the advantages and disadvantages of the different propulsion systems are given. This thesis estimates possibilities to apply different diesel-electric propulsion concepts for different vessel types. Small and medium size vessel’s power ranges are studied. The optimal delivery system is chosen. This choice is made on the base of detailed study of the concepts, electrical equipment market and comparison of mass, volume and efficiency parameters. In this thesis three marine generators are designed. They are: salient pole synchronous generator and two permanent magnet synchronous generators. Their electrical, dimensional, cost and efficiency parameters are compared. To understand all the benefits diagrams with these parameters are prepared. Possible benefits and money savings are estimated. As the result the advantages, disadvantages and boundary conditions for the permanent magnet synchronous generator application in marine electric-power systems are found out.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Systems biology is a new, emerging and rapidly developing, multidisciplinary research field that aims to study biochemical and biological systems from a holistic perspective, with the goal of providing a comprehensive, system- level understanding of cellular behaviour. In this way, it addresses one of the greatest challenges faced by contemporary biology, which is to compre- hend the function of complex biological systems. Systems biology combines various methods that originate from scientific disciplines such as molecu- lar biology, chemistry, engineering sciences, mathematics, computer science and systems theory. Systems biology, unlike “traditional” biology, focuses on high-level concepts such as: network, component, robustness, efficiency, control, regulation, hierarchical design, synchronization, concurrency, and many others. The very terminology of systems biology is “foreign” to “tra- ditional” biology, marks its drastic shift in the research paradigm and it indicates close linkage of systems biology to computer science. One of the basic tools utilized in systems biology is the mathematical modelling of life processes tightly linked to experimental practice. The stud- ies contained in this thesis revolve around a number of challenges commonly encountered in the computational modelling in systems biology. The re- search comprises of the development and application of a broad range of methods originating in the fields of computer science and mathematics for construction and analysis of computational models in systems biology. In particular, the performed research is setup in the context of two biolog- ical phenomena chosen as modelling case studies: 1) the eukaryotic heat shock response and 2) the in vitro self-assembly of intermediate filaments, one of the main constituents of the cytoskeleton. The range of presented approaches spans from heuristic, through numerical and statistical to ana- lytical methods applied in the effort to formally describe and analyse the two biological processes. We notice however, that although applied to cer- tain case studies, the presented methods are not limited to them and can be utilized in the analysis of other biological mechanisms as well as com- plex systems in general. The full range of developed and applied modelling techniques as well as model analysis methodologies constitutes a rich mod- elling framework. Moreover, the presentation of the developed methods, their application to the two case studies and the discussions concerning their potentials and limitations point to the difficulties and challenges one encounters in computational modelling of biological systems. The problems of model identifiability, model comparison, model refinement, model inte- gration and extension, choice of the proper modelling framework and level of abstraction, or the choice of the proper scope of the model run through this thesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One of the targets of the climate and energy package of the European Union is to increase the energy efficiency in order to achieve a 20 percent reduction in primary energy use compared with the projected level by 2020. The energy efficiency can be improved for example by increasing the rotational speed of large electrical drives, because this enables the elimination of gearboxes leading to a compact design with lower losses. The rotational speeds of traditional bearings, such as roller bearings, are limited by mechanical friction. Active magnetic bearings (AMBs), on the other hand, allow very high rotational speeds. Consequently, their use in large medium- and high-speed machines has rapidly increased. An active magnetic bearing rotor system is an inherently unstable, nonlinear multiple-input, multiple-output system. Model-based controller design of AMBs requires an accurate system model. Finite element modeling (FEM) together with the experimental modal analysis provides a very accurate model for the rotor, and a linearized model of the magneticactuators has proven to work well in normal conditions. However, the overall system may suffer from unmodeled dynamics, such as dynamics of foundation or shrink fits. This dynamics can be modeled by system identification. System identification can also be used for on-line diagnostics. In this study, broadband excitation signals are adopted to the identification of an active magnetic bearing rotor system. The broadband excitation enables faster frequency response function measurements when compared with the widely used stepped sine and swept sine excitations. Different broadband excitations are reviewed, and the random phase multisine excitation is chosen for further study. The measurement times using the multisine excitation and the stepped sine excitation are compared. An excitation signal design with an analysis of the harmonics produced by the nonlinear system is presented. The suitability of different frequency response function estimators for an AMB rotor system are also compared. Additionally, analytical modeling of an AMB rotor system, obtaining a parametric model from the nonparametric frequency response functions, and model updating are discussed in brief, as they are key elements in the modeling for a control design. Theoretical methods are tested with a laboratory test rig. The results conclude that an appropriately designed random phase multisine excitation is suitable for the identification of AMB rotor systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this thesis, general approach is devised to model electrolyte sorption from aqueous solutions on solid materials. Electrolyte sorption is often considered as unwanted phenomenon in ion exchange and its potential as an independent separation method has not been fully explored. The solid sorbents studied here are porous and non-porous organic or inorganic materials with or without specific functional groups attached on the solid matrix. Accordingly, the sorption mechanisms include physical adsorption, chemisorption on the functional groups and partition restricted by electrostatic or steric factors. The model is tested in four Cases Studies dealing with chelating adsorption of transition metal mixtures, physical adsorption of metal and metalloid complexes from chloride solutions, size exclusion of electrolytes in nano-porous materials and electrolyte exclusion of electrolyte/non-electrolyte mixtures. The model parameters are estimated using experimental data from equilibrium and batch kinetic measurements, and they are used to simulate actual single-column fixed-bed separations. Phase equilibrium between the solution and solid phases is described using thermodynamic Gibbs-Donnan model and various adsorption models depending on the properties of the sorbent. The 3-dimensional thermodynamic approach is used for volume sorption in gel-type ion exchangers and in nano-porous adsorbents, and satisfactory correlation is obtained provided that both mixing and exclusion effects are adequately taken into account. 2-Dimensional surface adsorption models are successfully applied to physical adsorption of complex species and to chelating adsorption of transition metal salts. In the latter case, comparison is also made with complex formation models. Results of the mass transport studies show that uptake rates even in a competitive high-affinity system can be described by constant diffusion coefficients, when the adsorbent structure and the phase equilibrium conditions are adequately included in the model. Furthermore, a simplified solution based on the linear driving force approximation and the shrinking-core model is developed for very non-linear adsorption systems. In each Case Study, the actual separation is carried out batch-wise in fixed-beds and the experimental data are simulated/correlated using the parameters derived from equilibrium and kinetic data. Good agreement between the calculated and experimental break-through curves is usually obtained indicating that the proposed approach is useful in systems, which at first sight are very different. For example, the important improvement in copper separation from concentrated zinc sulfate solution at elevated temperatures can be correctly predicted by the model. In some cases, however, re-adjustment of model parameters is needed due to e.g. high solution viscosity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The environmental aspect of corporate social responsibility (CSR) expressed through the process of the EMS implementation in the oil and gas companies is identified as the main subject of this research. In the theoretical part, the basic attention is paid to justification of a link between CSR and environmental management. The achievement of sustainable competitive advantage as a result of environmental capital growth and inclusion of the socially responsible activities in the corporate strategy is another issue that is of special significance here. Besides, two basic forms of environmental management systems (environmental decision support systems and environmental information management systems) are explored and their role in effective stakeholder interaction is tackled. The most crucial benefits of EMS are also analyzed to underline its importance as a source of sustainable development. Further research is based on the survey of 51 sampled oil and gas companies (both publicly owned and state owned ones) originated from different countries all over the world and providing reports on sustainability issues in the open access. To analyze their approach to sustainable development, a specifically designed evaluation matrix with 37 indicators developed in accordance with the General Reporting Initiative (GRI) guidelines for non-financial reporting was prepared. Additionally, the quality of environmental information disclosure was measured on the basis of a quality – quantity matrix. According to results of research, oil and gas companies prefer implementing reactive measures to the costly and knowledge-intensive proactive techniques for elimination of the negative environmental impacts. Besides, it was identified that the environmental performance disclosure is mostly rather limited, so that the quality of non-financial reporting can be judged as quite insufficient. In spite of the fact that most of the oil and gas companies in the sample claim the EMS to be embedded currently in their structure, they often do not provide any details for the process of their implementation. As a potential for the further development of EMS, author mentions possible integration of their different forms in a single entity, extension of existing structure on the basis of consolidation of the structural and strategic precautions as well as development of a unified certification standard instead of several ones that exist today in order to enhance control on the EMS implementation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The management of port-related supply chains is challenging due to the complex and heterogeneous operations of the ports with several actors and processes. That is why the importance of information sharing is emphasised in the ports. However, the information exchange between different port-related actors is often cumbersome and it still involves a lot of manual work and paper. Major ports and port-related actors usually have advanced information systems in daily use but these systems are seldom interoperable with each other, which prevents economies of scale to be reached. Smaller ports and companies might not be equipped with electronic data transmission at all. This is the final report of the Mobile port (MOPO) project, which has sought ways to improve the management and control of port-related sea and inland traffic with the aid of ICT technologies. The project has studied port community systems (PCS) used worldwide, evaluated the suitability of a PCS for the Finnish port operating environment and created a pilot solution of a Finnish PCS in the port of HaminaKotka. Further, the dry port concept and its influences on the transportation system have been explored. The Mobile Port project comprised of several literature reviews, interviews of over 50 port-related logistics and/or ICT professionals, two different kinds of simulation models as well as designing and implementing of the pilot solution of the Finnish PCS. The results of these multiple studies are summarised in this report. Furthermore, recommendations for future actions and the topics for further studies are addressed in the report. The study revealed that the information sharing in a typical Finnish port-related supply chain contains several bottlenecks that cause delays in shipments and waste resources. The study showed that many of these bottlenecks could be solved by building a port community system for the Finnish port community. Almost 30 different kinds of potential services or service entities of a Finnish PCS were found out during the study. The basic requirements, structure, interfaces and operation model of the Finnish PCS were also defined in the study. On the basis of the results of the study, a pilot solution of the Finnish PCS was implemented in the port of HaminaKotka. The pilot solution includes a Portconnect portal for the Finnish port community system (available at https://www.portconnect.fi) and two pilot applications, which are a service for handling the information flows concerning the movements of railway wagons and a service for handling the information flows between Finnish ports and Finland-Russian border. The study also showed that port community systems can be used to improve the environmental aspects of logistics in two different ways: 1) PCSs can bring direct environmental benefits and 2) PCSs can be used as an environmental tool in a port community. On the basis of the study, the development of the Finnish port community system should be continued by surveying other potential applications for the Finnish PCS. It is also important to study if there is need and resources to extend the Finnish PCS to operate in several ports or even on a national level. In the long run, it could be reasonable to clarify whether there would be possibilities to connect the Finnish PCS as a part of Baltic Sea wide, European-wide or even worldwide maritime and port-related network in order to get the best benefit from the system

Relevância:

60.00% 60.00%

Publicador:

Resumo:

En djupare förståelse för växelverkan mellan partiklar i suspensioner är av betydelse för utvecklingen av en mängd olika industriella produkter och processer. Till exempel kan nämnas pigmentbaserade färger och bestrykning av papper. Genom att öka kontrollbarheten kan dessa lättare optimeras för att uppnå förbättrade produktegenskaper och/eller sänkta produktionskostnader. Av stor betydelse är även en förbättrad möjlighet att minska produktens miljöpåverkan. I avhandlingen studerades jonstyrkan och jonspecificiteten inverkan i olika akvatiska suspensioner innehållande olika elektrolyter. De partiklar som avhandlingen omfattade var metalloxider, leror samt latex. Jonstyrkan studerades från låga (c <10-3M) till och med höga (c> 10-1M) elektrolytkoncentrationer. Vid koncentrationer under 0.1 M var partikelladdningen styrd av pH och jonstyrkan. Vid högre elektrolytkoncentrationer påverkade även jonspecificiteten partikelladdningen. Jonspecificiteten arrangerades i fenomenologiska serier funna i litteraturen samt med Born modellen definierad i termodynamiken. Överraskande höga absoluta zeta-potential värden erhölls vid höga elektrolytkoncentrationer vilket visar att den elektrostatiska repulsionen har betydelse även vid dessa förhållanden. Vidare studerades titanoxidsuspensioners egenskaper i akvatiska, icke-akvatiska och blandade lösningssystem under varierande koncentration av oxal- och fosfatsyra. Vid lågt vatteninnehåll studerades även suspensioner med svavelsyra. Konduktiviteten i suspensioner med lågt vatteninnehåll ökade med tillsatt oxal- eller fosforsyra vilket är en omvänd effekt jämfört med svavelsyra eller akvatiska suspensioner. Den omvända effekten skiftade gradvis tillbaka med ökad vatteninnehåll. En analys av suspensionernas adsorption i höga etanolkoncentrationer gjordes med konduktiviteten, pH och zeta-potentialen. Viskositet studerades och applicerades framgångsrikt i viskositet/ytladdningsmodeller utvecklade för akvatiska suspensioner.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multiprocessing is a promising solution to meet the requirements of near future applications. To get full benefit from parallel processing, a manycore system needs efficient, on-chip communication architecture. Networkon- Chip (NoC) is a general purpose communication concept that offers highthroughput, reduced power consumption, and keeps complexity in check by a regular composition of basic building blocks. This thesis presents power efficient communication approaches for networked many-core systems. We address a range of issues being important for designing power-efficient manycore systems at two different levels: the network-level and the router-level. From the network-level point of view, exploiting state-of-the-art concepts such as Globally Asynchronous Locally Synchronous (GALS), Voltage/ Frequency Island (VFI), and 3D Networks-on-Chip approaches may be a solution to the excessive power consumption demanded by today’s and future many-core systems. To this end, a low-cost 3D NoC architecture, based on high-speed GALS-based vertical channels, is proposed to mitigate high peak temperatures, power densities, and area footprints of vertical interconnects in 3D ICs. To further exploit the beneficial feature of a negligible inter-layer distance of 3D ICs, we propose a novel hybridization scheme for inter-layer communication. In addition, an efficient adaptive routing algorithm is presented which enables congestion-aware and reliable communication for the hybridized NoC architecture. An integrated monitoring and management platform on top of this architecture is also developed in order to implement more scalable power optimization techniques. From the router-level perspective, four design styles for implementing power-efficient reconfigurable interfaces in VFI-based NoC systems are proposed. To enhance the utilization of virtual channel buffers and to manage their power consumption, a partial virtual channel sharing method for NoC routers is devised and implemented. Extensive experiments with synthetic and real benchmarks show significant power savings and mitigated hotspots with similar performance compared to latest NoC architectures. The thesis concludes that careful codesigned elements from different network levels enable considerable power savings for many-core systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Energy efficiency is one of the major objectives which should be achieved in order to implement the limited energy resources of the world in a sustainable way. Since radiative heat transfer is the dominant heat transfer mechanism in most of fossil fuel combustion systems, more accurate insight and models may cause improvement in the energy efficiency of the new designed combustion systems. The radiative properties of combustion gases are highly wavelength dependent. Better models for calculating the radiative properties of combustion gases are highly required in the modeling of large scale industrial combustion systems. With detailed knowledge of spectral radiative properties of gases, the modeling of combustion processes in the different applications can be more accurate. In order to propose a new method for effective non gray modeling of radiative heat transfer in combustion systems, different models for the spectral properties of gases including SNBM, EWBM, and WSGGM have been studied in this research. Using this detailed analysis of different approaches, the thesis presents new methods for gray and non gray radiative heat transfer modeling in homogeneous and inhomogeneous H2O–CO2 mixtures at atmospheric pressure. The proposed method is able to support the modeling of a wide range of combustion systems including the oxy-fired combustion scenario. The new methods are based on implementing some pre-obtained correlations for the total emissivity and band absorption coefficient of H2O–CO2 mixtures in different temperatures, gas compositions, and optical path lengths. They can be easily used within any commercial CFD software for radiative heat transfer modeling resulting in more accurate, simple, and fast calculations. The new methods were successfully used in CFD modeling by applying them to industrial scale backpass channel under oxy-fired conditions. The developed approaches are more accurate compared with other methods; moreover, they can provide complete explanation and detailed analysis of the radiation heat transfer in different systems under different combustion conditions. The methods were verified by applying them to some benchmarks, and they showed a good level of accuracy and computational speed compared to other methods. Furthermore, the implementation of the suggested banded approach in CFD software is very easy and straightforward.