41 resultados para Stress informal
Resumo:
Shallow coastal areas are dynamic habitats that are affected by a variety of abiotic and biotic factors. In addition to the natural environmental stress, estuarine and coastal seagrass ecosystems are exposed to effects of climate change and other anthropogenic impacts. In this thesis the effect of different abiotic (shading stress, salinity and temperature) and biotic stressors (presence of co-occurring species) and different levels and combinations of stressors on the performance and survival of eelgrass (Zostera marina) was assessed. To investigate the importance of scale for stress responses, varying levels of biological organization (genotype, life stage, population and plant community) were studied in field and aquarium experiments. Light limitation, decreased salinity and increased temperature affected eelgrass performance negatively in papers I, II and III, respectively. While co-occurring plant species had no notable effect on eelgrass in paper IV, the presence of eelgrass increased the biomass of Potamogeton perfoliatus. The findings in papers II and III confirmed that more extreme levels of salinity and temperature had stronger impacts on plant performance compared to intermediate levels, but intermediate levels also had more severe effects on plants when they were exposed to several stressors, as illustrated in paper II. Thus, multiple stressors had negative synergetic effects. The results in papers I, II and III indicate that future changes in light climate, salinity and temperature can have serious impacts on eelgrass performance and survival. Stress responses were found to vary among genotypes, life stages and populations in papers I, II and III, respectively, emphasizing the importance of study scale. The results demonstrate that while stress in general affects seagrass productivity negatively, the severity of effects can vary substantially depending on the studied scale or level of biological organization. Eelgrass genotypes can differ in their stress and recovery processes, as observed in paper I. In paper II, eelgrass seedlings were less prone to abiotic stress compared to adult plants, but stress also decreased their survival considerably. This indicates that recruitment and re-colonization through seeds might be threatened in the future. Variation among population responses observed in paper III indicates that long-term local adaptation under differing selection pressures has caused divergence in salinity tolerance between Baltic eelgrass populations. This variability in stress tolerance observed in papers I and III suggests that some eelgrass genotypes and populations have a better capacity to adapt to changes and survive in a changing environment. Multiple stressors and biological level-specific responses demonstrate the uncertainty in predicting eelgrass responses in a changing environment. As eelgrass populations may differ in their stress tolerance both within and across regions, conservation strategies at both local and regional scales are urgently needed in order to ensure the survival of these important ecosystems.
Resumo:
All aerobic organisms have to deal with the toxicity of oxygen. Oxygen enables more efficient energy production compared to anaerobic respiration or fermentation, but at the same time reactive oxygen species (ROS) are being formed. ROS can also be produced by external factors such as UV-radiation and contamination. ROS can cause damage to biomolecules such as DNA, lipids and proteins and organisms try to keep the damage as small as possible by repairing biomolecules and metabolizing ROS. All ROS are not harmful, because they are used as signaling molecules. To cope against ROS organism have an antioxidant (AOX) system which consists both enzymatic and non-enzymatic AOX defense. Some AOX are produced by the organism itself and some are gained via diet. In this thesis I studied environmentally caused changes in the redox regulation of different wild vertebrate animals to gain knowledge on the temporal, spatial and pollution-derived-effects on the AOX systems. As study species I used barn swallow, ringed seal and the Baltic salmon. For the barn swallow the main interest was the seasonal fluctuation in the redox regulation and its connection to migration and breeding. The more contaminated ringed seals of the Baltic Sea were compared to seals from cleaner Svalbard to investigate whether they suffered from contaminant induced oxidative stress. The regional and temporal variation in redox regulation and regional variation in mRNA and protein expressions of Baltic salmon were studied to gain knowledge if the salmon from different areas are equally stressed. As a comparative aspect the redox responses of these different species were investigated to see which parts of the AOX system are substantial in which species. Certain parts of AOX system were connected to breeding and others to migration in barn swallows, there was also differences in biotransformation between birds caught from Africa and Finland. The Baltic ringed seal did not differ much from the seals from Svalbard, despite the difference in contaminant load. A possible explanation to this could be the enhanced AOX mechanisms against dive-associated oxidative stress in diving air-breathing animals, which also helps to cope with ROS derived from other sourses. The Baltic salmon from Gulf of Finland (GoF) showed higher activities in their AOX defense enzymes and more oxidative damage than fish from other areas. Also on mRNA and proteomic level, stress related metabolic changes were most profound in in the fish from GoF. Mainly my findings on species related differences followed the pattern of mammals showing highest activities and least damage and birds showing lower activities and most damage, fish being intermediate. In general, the glutathione recycling-related enzymes and the ratio of oxidized and reduced glutathione seemed to be the most affected parameters in all of the species.
Resumo:
Background: A positive association has been suggested to exist between physical activity and psychological wellbeing. However, the association between physical fitness, especially muscle fitness and psychological wellbeing, has not yet been fully elucidated. Aims: The objective of the present thesis was to assess the relationship between physical activity and physical fitness with stress symptoms, mental resources and workability among young men and working adults. Subjects and methods: Volunteers of young men (n=831, mean age 25-y (±4.0)), underwent a cardiorespiratory (CRF) and muscle fitness (MFI) test and completed leisure time physical activity (LTPA) and Occupational Stress Questionnaires (OSQ). The participants were divided into tertiles according to LTPA, CRF and MFI. A 12-month exercise intervention evaluated 371 working adults (exercise group, n=338, mean age 45-y (±8.8)); control group, n=33, mean age 41-y (±6.9)).The exercise group underwent a 12-month exercise program followed by a 12-month follow-up. The OSQ, Workability Index (WAI) and CRF were evaluated at baseline and at 4, 8, 12 and 24 months. Results: Physically inactive subjects reported more stress and less available mental resources than the subjects who reported high physical activity levels. Improved physical fitness was associated with less stress and more mental resources among normal weight men, but not in overweight men. After a 12-month exercise intervention, employees in the exercise group increased their physical activity, improved workability, decreased stress symptoms and improved their physical fitness and mental resources. After the follow-up year, workability and stress were improved compared to baseline. Conclusions: In this thesis, good physical fitness was associated with improved psychological wellbeing among young men and working adults.
Resumo:
The purpose of this research was to study how management trainee program participants experienced the program with respect to their learning and competence development. Additionally, the purpose was also to examine what the trainees learned and how the learning occurred. Furthermore, factors affecting learning in the workplace were examined. The theoretical framework of this research was formed utilizing individual competence and informal learning frameworks. Research was conducted as a single case study and data was gathered by thematic interviews. The results of this research indicate that the trainees experienced the program as a good method for learning the overall picture of the organization and its business. Regarding competence development, especially knowledge- and cognitive competence categories were developed during the program. The best learning outcomes were achieved through learning by doing, in co-operation with others, and learning from others. The results indicate that the planning of the program and its structure have a significant effect on learning. Furthermore, a sufficient level of challenge was experienced as being important for the quality of the learning as well.
Resumo:
The aim of this research was to develop a piping stress analysis guideline to be widely used in Neste Jacobs Oy’s domestic and foreign projects. The company’s former guideline to performing stress analysis was partial and lacked important features, which were to be fixed through this research. The development of the guideline was based on literature research and gathering of existing knowledge from the experts in piping engineering. Case study method was utilized by performing stress analysis on an existing project with help of the new guideline. Piping components, piping engineering in process industry, and piping stress analysis were studied in the theory section of this research. Also, the existing piping standards were studied and compared with one another. By utilizing the theory found in literature and the vast experience and know-how collected from the company’s employees, a new guideline for stress analysis was developed. The guideline would be widely used in various projects. The purpose of the guideline was to clarify certain issues such as which of the piping would have to be analyzed, how are different material values determined and how will the results be reported. As a result, an extensive and comprehensive guideline for stress analysis was created. The new guideline more clearly defines formerly unclear points and creates clear parameters to performing calculations. The guideline is meant to be used by both new and experienced analysts and with its aid, the calculation process was unified throughout the whole company’s organization. Case study was used to exhibit how the guideline is utilized in practice, and how it benefits the calculation process.
Resumo:
Thermal cutting methods, are commonly used in the manufacture of metal parts. Thermal cutting processes separate materials by using heat. The process can be done with or without a stream of cutting oxygen. Common processes are Oxygen, plasma and laser cutting. It depends on the application and material which cutting method is used. Numerically-controlled thermal cutting is a cost-effective way of prefabricating components. One design aim is to minimize the number of work steps in order to increase competitiveness. This has resulted in the holes and openings in plate parts manufactured today being made using thermal cutting methods. This is a problem from the fatigue life perspective because there is local detail in the as-welded state that causes a rise in stress in a local area of the plate. In a case where the static utilization of a net section is full used, the calculated linear local stresses and stress ranges are often over 2 times the material yield strength. The shakedown criteria are exceeded. Fatigue life assessment of flame-cut details is commonly based on the nominal stress method. For welded details, design standards and instructions provide more accurate and flexible methods, e.g. a hot-spot method, but these methods are not universally applied to flame cut edges. Some of the fatigue tests of flame cut edges in the laboratory indicated that fatigue life estimations based on the standard nominal stress method can give quite a conservative fatigue life estimate in cases where a high notch factor was present. This is an undesirable phenomenon and it limits the potential for minimizing structure size and total costs. A new calculation method is introduced to improve the accuracy of the theoretical fatigue life prediction method of a flame cut edge with a high stress concentration factor. Simple equations were derived by using laboratory fatigue test results, which are published in this work. The proposed method is called the modified FAT method (FATmod). The method takes into account the residual stress state, surface quality, material strength class and true stress ratio in the critical place.
Resumo:
This study discusses the nature of informal learning process in business organizations, and the importance of different organization-level factors in this process. The purpose of this study is to understand the role of organization-level factors on informal learning process with three subquestions: how informal learning process takes place in business organizations, what organization-level factors affects informal learning process, and how informal learning process is affected by organizational-level factors. The theoretical background of this study includes literatures on the concept of informal learning, its process, and organization-level factors that can affect informal learning process. The empirical research has been conducted in this study by face-to-face interviews. The interviews were conducted between June and August 2015 in Dhaka, Bangladesh. Thirteen interviews were made with the employees from different hierarchical levels from four freight forwarding MNCs in Bangladesh. Constant comparative analysis has been used to process the collected data until reaching a level of saturation. The empirical research found that all the phases in an informal learning process are not linear and sequential, and the role of organization-level factors on each phase varies with the degree and nature of each factor. In addition, the results also revealed that all the organization-level factors do not interact with each other while playing their role on informal learning process. The findings of this study considerably extend our understanding of the important role of HRD, manager, colleague, culture, and work structure on informal learning process in the workplace. However, future research in different organizational contexts is required to generalize the findings of this study.
Resumo:
This study discusses the nature of informal learning process in business organizations, and the importance of different organization-level factors in this process. The purpose of this study is to understand the role of organization-level factors on informal learning process with three subquestions: how informal learning process takes place in business organizations, what organizationlevel factors affects informal learning process, and how informal learning process is affected by organizational-level factors. The theoretical background of this study includes literatures on the concept of informal learning, its process, and organization-level factors that can affect informal learning process. The empirical research has been conducted in this study by face-to-face interviews. The interviews were conducted between June and August 2015 in Dhaka, Bangladesh. Thirteen interviews were made with the employees from different hierarchical levels from four freight forwarding MNCs in Bangladesh. Constant comparative analysis has been used to process the collected data until reaching a level of saturation. The empirical research found that all the phases in an informal learning process are not linear and sequential, and the role of organization-level factors on each phase varies with the degree and nature of each factor. In addition, the results also revealed that all the organization-level factors do not interact with each other while playing their role on informal learning process. The findings of this study considerably extend our understanding of the important role of HRD, manager, colleague, culture, and work structure on informal learning process in the workplace. However, future research in different organizational contexts is required to generalize the findings of this study.
Resumo:
Highly dynamic systems, often considered as resilient systems, are characterised by abiotic and biotic processes under continuous and strong changes in space and time. Because of this variability, the detection of overlapping anthropogenic stress is challenging. Coastal areas harbour dynamic ecosystems in the form of open sandy beaches, which cover the vast majority of the world’s ice-free coastline. These ecosystems are currently threatened by increasing human-induced pressure, among which mass-development of opportunistic macroalgae (mainly composed of Chlorophyta, so called green tides), resulting from the eutrophication of coastal waters. The ecological impact of opportunistic macroalgal blooms (green tides, and blooms formed by other opportunistic taxa), has long been evaluated within sheltered and non-tidal ecosystems. Little is known, however, on how more dynamic ecosystems, such as open macrotidal sandy beaches, respond to such stress. This thesis assesses the effects of anthropogenic stress on the structure and the functioning of highly dynamic ecosystems using sandy beaches impacted by green tides as a study case. The thesis is based on four field studies, which analyse natural sandy sediment benthic community dynamics over several temporal (from month to multi-year) and spatial (from local to regional) scales. In this thesis, I report long-lasting responses of sandy beach benthic invertebrate communities to green tides, across thousands of kilometres and over seven years; and highlight more pronounced responses of zoobenthos living in exposed sandy beaches compared to semi-exposed sands. Within exposed sandy sediments, and across a vertical scale (from inshore to nearshore sandy habitats), I also demonstrate that the effects of the presence of algal mats on intertidal benthic invertebrate communities is more pronounced than that on subtidal benthic invertebrate assemblages, but also than on flatfish communities. Focussing on small-scale variations in the most affected faunal group (i.e. benthic invertebrates living at low shore), this thesis reveals a decrease in overall beta-diversity along a eutrophication-gradient manifested in the form of green tides, as well as the increasing importance of biological variables in explaining ecological variability of sandy beach macrobenthic assemblages along the same gradient. To illustrate the processes associated with the structural shifts observed where green tides occurred, I investigated the effects of high biomasses of opportunistic macroalgae (Ulva spp.) on the trophic structure and functioning of sandy beaches. This work reveals a progressive simplification of sandy beach food web structure and a modification of energy pathways over time, through direct and indirect effects of Ulva mats on several trophic levels. Through this thesis I demonstrate that highly dynamic systems respond differently (e.g. shift in δ13C, not in δ15N) and more subtly (e.g. no mass-mortality in benthos was found) to anthropogenic stress compared to what has been previously shown within more sheltered and non-tidal systems. Obtaining these results would not have been possible without the approach used through this work; I thus present a framework coupling field investigations with analytical approaches to describe shifts in highly variable ecosystems under human-induced stress.