52 resultados para Solid concentrations
A Study on Health Effects of Fine Particle Concentrations in Tampere area during 2.5 Years Follow-up
Resumo:
Solid processes are used for obtaining the valuable minerals. Due to their worth, it is obligatory to perform different experiments to determine the different values of these minerals. With the passage of time, it is becoming more difficult to carry out these experiments for each mineral for different characteristics due to high labor costs and consumption of time. Therefore, scientists and engineers have tried to overcome this issue. They made different software to handle this problem. Aspen is one of those software for the calculation of different parameters. Therefore, the aim of this report was to do simulation for solid processes to observe different effect for minerals. Different solid processes like crushing, screening; filtration and crystallization were simulated by Aspen Plus. The simulation results are obtained by using this simulation software and they are described in this thesis. It was noticed that the results were acceptable for all solid processes. Therefore, this software can be used for the designing of crushers by calculating the power consumption of crushers, can design the filter and for the calculation of material balance for all processes.
Resumo:
The aim of this thesis is to utilize the technology developed at LUT and to provide an easy tool for high-speed solid-rotor induction machine preliminary design. Computer aided design tool MathCAD has been chosen as the environment for realizing the calculation program. Four versions of the design program have been made depending on the motor rotor type. The first rotor type is an axially slitted solid-rotor with steel end rings. The next one is an axially slitted solid-rotor with copper end rings. The third machine type is a solid rotor with deep, rectangular copper bars and end rings (squirrel cage). And the last one is a solid-rotor with round copper bars and end rings (squirrel cage). Each type of rotor has its own specialties but a general thread of design is common. This paper follows the structure of the calculating program and explains some features and formulas. The attention is concentrated on the difference between laminated and solid-rotor machine design principles. There is no deep analysis of the calculation ways are presented. References for all solution methods appearing during the design procedure are given for more detailed studying. This thesis pays respect to the latest innovations in solid-rotor machines theory. Rotor ends’ analytical calculation follows the latest knowledge in this field. Correction factor for adjusting the rotor impedance is implemented. The purpose of the created design program is to calculate the preliminary dimensions of the machine according to initial data. Obtained results are not recommended for exact machine development. Further more detailed design should be done in a finite element method application. Hence, this thesis is a practical tool for the prior evaluating of the high-speed machine with different solid-rotor types parameters.
Resumo:
The bioavailability of metals and their potential for environmental pollution depends not simply on total concentrations, but is to a great extent determined by their chemical form. Consequently, knowledge of aqueous metal species is essential in investigating potential metal toxicity and mobility. The overall aim of this thesis is, thus, to determine the species of major and trace elements and the size distribution among the different forms (e.g. ions, molecules and mineral particles) in selected metal-enriched Boreal river and estuarine systems by utilising filtration techniques and geochemical modelling. On the basis of the spatial physicochemical patterns found, the fractionation and complexation processes of elements (mainly related to input of humic matter and pH-change) were examined. Dissolved (<1 kDa), colloidal (1 kDa-0.45 μm) and particulate (>0.45 μm) size fractions of sulfate, organic carbon (OC) and 44 metals/metalloids were investigated in the extremely acidic Vörå River system and its estuary in W Finland, and in four river systems in SW Finland (Sirppujoki, Laajoki, Mynäjoki and Paimionjoki), largely affected by soil erosion and acid sulfate (AS) soils. In addition, geochemical modelling was used to predict the formation of free ions and complexes in these investigated waters. One of the most important findings of this study is that the very large amounts of metals known to be released from AS soils (including Al, Ca, Cd, Co, Cu, Mg, Mn, Na, Ni, Si, U and the lanthanoids) occur and can prevail mainly in toxic forms throughout acidic river systems; as free ions and/or sulfate-complexes. This has serious effects on the biota and especially dissolved Al is expected to have acute effects on fish and other organisms, but also other potentially toxic dissolved elements (e.g. Cd, Cu, Mn and Ni) can have fatal effects on the biota in these environments. In upstream areas that are generally relatively forested (higher pH and contents of OC) fewer bioavailable elements (including Al, Cu, Ni and U) may be found due to complexation with the more abundantly occurring colloidal OC. In the rivers in SW Finland total metal concentrations were relatively high, but most of the elements occurred largely in a colloidal or particulate form and even elements expected to be very soluble (Ca, K, Mg, Na and Sr) occurred to a large extent in colloidal form. According to geochemical modelling, these patterns may only to a limited extent be explained by in-stream metal complexation/adsorption. Instead there were strong indications that the high metal concentrations and dominant solid fractions were largely caused by erosion of metal bearing phyllosilicates. A strong influence of AS soils, known to exist in the catchment, could be clearly distinguished in the Sirppujoki River as it had very high concentrations of a metal sequence typical of AS soils in a dissolved form (Ba, Br, Ca, Cd, Co, K, Mg, Mn, Na, Ni, Rb and Sr). In the Paimionjoki River, metal concentrations (including Ba, Cs, Fe, Hf, Pb, Rb, Si, Th, Ti, Tl and V; not typical of AS soils in the area) were high, but it was found that the main cause of this was erosion of metal bearing phyllosilicates and thus these metals occurred dominantly in less toxic colloidal and particulate fractions. In the two nearby rivers (Laajoki and Mynäjoki) there was influence of AS soils, but it was largely masked by eroded phyllosilicates. Consequently, rivers draining clay plains sensitive to erosion, like those in SW Finland, have generally high background metal concentrations due to erosion. Thus, relying on only semi-dissolved (<0.45 μm) concentrations obtained in routine monitoring, or geochemical modelling based on such data, can lead to a great overestimation of the water toxicity in this environment. The potentially toxic elements that are of concern in AS soil areas will ultimately be precipitated in the recipient estuary or sea, where the acidic metalrich river water will gradually be diluted/neutralised with brackish seawater. Along such a rising pH gradient Al, Cu and U will precipitate first together with organic matter closest to the river mouth. Manganese is relatively persistent in solution and, thus, precipitates further down the estuary as Mn oxides together with elements such as Ba, Cd, Co, Cu and Ni. Iron oxides, on the contrary, are not important scavengers of metals in the estuary, they are predicted to be associated only with As and PO4.
Resumo:
This thesis presents an approach for formulating and validating a space averaged drag model for coarse mesh simulations of gas-solid flows in fluidized beds using the two-fluid model. Proper modeling for fluid dynamics is central in understanding any industrial multiphase flow. The gas-solid flows in fluidized beds are heterogeneous and usually simulated with the Eulerian description of phases. Such a description requires the usage of fine meshes and small time steps for the proper prediction of its hydrodynamics. Such constraint on the mesh and time step size results in a large number of control volumes and long computational times which are unaffordable for simulations of large scale fluidized beds. If proper closure models are not included, coarse mesh simulations for fluidized beds do not give reasonable results. The coarse mesh simulation fails to resolve the mesoscale structures and results in uniform solids concentration profiles. For a circulating fluidized bed riser, such predicted profiles result in a higher drag force between the gas and solid phase and also overestimated solids mass flux at the outlet. Thus, there is a need to formulate the closure correlations which can accurately predict the hydrodynamics using coarse meshes. This thesis uses the space averaging modeling approach in the formulation of closure models for coarse mesh simulations of the gas-solid flow in fluidized beds using Geldart group B particles. In the analysis of formulating the closure correlation for space averaged drag model, the main parameters for the modeling were found to be the averaging size, solid volume fraction, and distance from the wall. The closure model for the gas-solid drag force was formulated and validated for coarse mesh simulations of the riser, which showed the verification of this modeling approach. Coarse mesh simulations using the corrected drag model resulted in lowered values of solids mass flux. Such an approach is a promising tool in the formulation of appropriate closure models which can be used in coarse mesh simulations of large scale fluidized beds.
Resumo:
In this doctoral thesis, a power conversion unit for a 10 kWsolid oxide fuel cell is modeled, and a suitable control system is designed. The need for research was identified based on an observation that there was no information available about the characteristics of the solid oxide fuel cell from the perspective of power electronics and the control system, and suitable control methods had not previously been studied in the literature. In addition, because of the digital implementation of the control system, the inherent characteristics of the digital system had to be taken into account in the characteristics of the solid oxide fuel cell (SOFC). The characteristics of the solid oxide fuel cell as well the methods for the modeling and control of the DC/DC converter and the grid converter are studied by a literature survey. Based on the survey, the characteristics of the SOFC as an electrical power source are identified, and a solution to the interfacing of the SOFC in distributed generation is proposed. A mathematical model of the power conversion unit is provided, and the control design for the DC/DC converter and the grid converter is made based on the proposed interfacing solution. The limit cycling phenomenon is identified as a source of low-frequency current ripple, which is found to be insignificant when connected to a grid-tied converter. A method to mitigate a second harmonic originating from the grid interface is proposed, and practical considerations of the operation with the solid oxide fuel cell plant are presented. At the theoretical level, the thesis discusses and summarizes the methods to successfully derive a model for a DC/DC converter, a grid converter, and a power conversion unit. The results of this doctoral thesis can also be used in other applications, and the models and methods can be adopted to similar applications such as photovoltaic systems. When comparing the results with the objectives of the doctoral thesis, we may conclude that the objectives set for the work are met. In this doctoral thesis, theoretical and practical guidelines are presented for the successful control design to connect a SOFC-based distributed generation plant to the utility grid.
Resumo:
Oxidized starch is a key component in the paper industry, where it is used as both surfacing sizer and filler. Large quantities are annually used for this purpose; however, the methods for the oxidation are not environmentally friendly. In our research, we have studied the possibility to replace the harmful oxidation agents, such as hypochlorite or iodates and transition metal catalysts, with a more environmentally friendly oxidant, hydrogen peroxide (H2O2), and a special metal complex catalyst (FePcS), of which only a small amount is needed. The work comprised batch and semi-batch studies by H2O2, ultrasound studies of starch particles, determination of low-molecular by-products and determination of the decomposition kinetics of H2O2 in the presence of starch and the catalyst. This resulted in a waste-free oxidation method, which only produces water and oxygen as side products. The starch oxidation was studied in both semi-batch and batch modes in respective to the oxidant (H2O2) addition. The semi-batch mode proved to yield a sufficient degree of substitution (COOH groups) for industrial purposes. Treatment of starch granules by ultrasound was found to improve the reactivity of starch. The kinetic results were found out to have a rather complex pattern – several oxidation phases were observed, apparently due to the fact that the oxidation reaction in the beginning only took place on the surface, whereas after a prolonged reaction time, partial degradation of the solid starch granules allowed further reaction in the interior parts. Batch-mode experiments enabled a more detailed study of the mechanisms of starch in the presence of H2O2 and the catalyst, but yielded less oxidized starch due to rapid decomposition of H2O2 due to its high concentrations. The effect of the solid-liquid (S/L) ratio in the reaction system was studied in batch experiments. These studies revealed that the presence of the catalyst and the starch enhance the H2O2 decomposition.
Resumo:
Metallien laajamittaisen ja runsaan käytön vuoksi nykyään on keskityttävä aikaisempaa tarkemmin metallipäästöjen estämiseen ja puhdistamiseen. Metallien puhdistamiseen jätevesistä voidaan käyttää erilaisia yksikköoperaatiomenetelmiä, mutta selektiivisempään erotukseen päästään ioninvaihto- ja adsorbenttimateriaaleilla. Työn tarkoitusena on valmistaa ja tutkia nikkeliselektiivisiä adsorbenttimateriaaleja. Lisäksi tutkimuskohteena on nikkelin ja 1,10-fenantroliinin välisen kompleksin muodostuminen eri pH-arvoilla. Selektiivisten adsorbenttimateriaalien valmistaminen onnistuu liittämällä kiinteään kantajaan ligandi. Tämän työn tapauksessa nikkelitemplaatin liittäminen kiinteään kantajaan funktionalisointivaiheessa muodostaa adsorbenttiin nikkelille spesifisen kohdan. Käytännössä spesifisyyden syntyminen ei ole itsestäänselvyys, vaan se riippuu paljon funktionalisointitavasta. Tässä työssä funktionalisointitapana olivat fysikaalinen adsorptio ja impregnointi. Nikkelin ja 1,10-fenantroliinin välisen kompleksin muodostumista tutkittiin eri pH-arvojen lisäksi neljällä eri happokonsentraatiolla. Tuloksia verrattiin sellaisen liuoksen spektriin, missä oli pelkkää nikkeliä. Tuloksista havaittiin, että komplekseja muodostuu käytännössä samalla tavalla pH:n ollessa 1–6. Vasta 5 M HNO3 alkoi heikentää kompleksien muodostumista, ja 10 M HNO3 esti kompleksien muodostumisen täysin. Adsorbenttimateriaaleja valmistettiin useita erilaisia, joihin osaan liitettiin nikkelitemplaatti ja osa jätettiin ilman templaattia. Työssä keskityttiin tutkimaan erityisesti kolmea silikasta valmistettua materiaalia, joissa vain kahdessa oli nikkelitemplaatti. Nikkelitemplaattien olemassaololla ei havaittu olevan juurikaan merkitystä nikkelin erottamiseen vesiliuoksista. Materiaaleille tehdyt regenerointikokeet osoittivat, että materiaalien toiminta ja kapasiteetti eivät olleet toivotulla tasolla.
Resumo:
Computational fluid dynamics (CFD) modeling is an important tool in designing new combustion systems. By using CFD modeling, entire combustion systems can be modeled and the emissions and the performance can be predicted. CFD modeling can also be used to develop new and better combustion systems from an economical and environmental point of view. In CFD modeling of solid fuel combustion, the combustible fuel is generally treated as single fuel particles. One of the limitations with the CFD modeling concerns the sub-models describing the combustion of single fuel particles. Available models in the scientific literature are in many cases not suitable as submodels for CFD modeling since they depend on a large number of input parameters and are computationally heavy. In this thesis CFD-applicable models are developed for the combustion of single fuel particles. The single particle models can be used to improve the combustion performance in various combustion devices or develop completely new technologies. The investigated fields are oxidation of carbon (C) and nitrogen (N) in char residues from solid fuels. Modeled char-C oxidation rates are compared to experimental oxidation rates for a large number of pulverized solid fuel chars under relevant combustion conditions. The experiments have been performed in an isothermal plug flow reactor operating at 1123-1673 K and 3-15 vol.% O2. In the single particle model, the char oxidation is based on apparent kinetics and depends on three fuel specific parameters: apparent pre-exponential factor, apparent activation energy, and apparent reaction order. The single particle model can be incorporated as a sub-model into a CFD code. The results show that the modeled char oxidation rates are in good agreement with experimental char oxidation rates up to around 70% of burnout. Moreover, the results show that the activation energy and the reaction order can be assumed to be constant for a large number of bituminous coal chars under conditions limited by the combined effects of chemical kinetics and pore diffusion. Based on this, a new model based on only one fuel specific parameter is developed (Paper III). The results also show that reaction orders of bituminous coal chars and anthracite chars differ under similar conditions (Paper I and Paper II); reaction orders of bituminous coal chars were found to be one, while reaction orders of anthracite chars were determined to be zero. This difference in reaction orders has not previously been observed in the literature and should be considered in future char oxidation models. One of the most frequently used comprehensive char oxidation models could not explain the difference in the reaction orders. In the thesis (Paper II), a modification to the model is suggested in order to explain the difference in reaction orders between anthracite chars and bituminous coal chars. Two single particle models are also developed for the NO formation and reduction during the oxidation of single biomass char particles. In the models the char-N is assumed to be oxidized to NO and the NO is partly reduced inside the particle. The first model (Paper IV) is based on the concentration gradients of NO inside and outside the particle and the second model is simplified to such an extent that it is based on apparent kinetics and can be incorporated as a sub-model into a CFD code (Paper V). Modeled NO release rates from both models were in good agreement with experimental measurements from a single particle reactor of quartz glass operating at 1173-1323 K and 3-19 vol.% O2. In the future, the models can be used to reduce NO emissions in new combustion systems.
Resumo:
Wood contains only a very small amount of lipophilic extractives, commonly known as wood pitch. The pitch is known to cause severe problems in papermaking processes. The amount of pitch in process waters can be decreased by seasoning of the raw material prior to pulping, pulp washing, removal of pitch by flotation, adsorption of pitch onto various mineral surfaces, and retention of pitch to the fibre material by cationic polymers. The aim of this study was to determine the influence of pH on some of the methods used for pitch control. Experiments were performed using laboratory-made wood pitch emulsions with varying pH, salt concentration, hemicellulose concentration and pitch composition. These emulsions were used to study the phase distribution of resin and fatty acids, the colloidal stability of pitch with and without steric stabilisation by galactoglucomannans, and the interactions between wood pitch and mineral particles. Purification of unbleached and peroxidebleached mill process water was performed by froth flotation in combination with a foaming agent. The distribution of resin and fatty acids (RFAs) between colloidal pitch droplets and the water phase was very dependent on pH. At pH 3, almost all of the RFAs were attached to the pitch droplets, while increasing the pH led to increasing concentration of dissolved RFAs in the water phase. The presence of salt shifted the release of RFAs towards higher pH, while lower ratio of neutral pitch in the emulsion resulted in release of RFAs at lower pH. It was also seen that the dissolution and adsorption of RFAs at sudden pHchanges takes place very quickly. Colloidal pitch was more stable against electrolyte-induced aggregation at higher pH, due to its higher anionic charge. The concentration of cationic polymers needed to aggregate colloidal pitch also increased with increasing pH. The surface characteristics of solid particles, such as amount of charged groups, were very important for understanding their interactions with colloidal wood pitch. Water-soluble galactoglucomannans stabilised the colloidal pitch sterically against aggregation, but could not completely prevent interactions between wood pitch and hydrophilic particles. Froth flotation of unbleached and peroxidebleached process water showed that the pitch could be removed more effectively and selectively at low pH, compared to at neutral pH. The pitch was removed more effectively, using lower concentrations of foaming agent, from peroxide-bleached water than from unbleached water. The results show that pH has a major impact on various pulping and papermaking processes. It determines the anionic charge of the colloidal pitch and the solubility of certain pitch components. Because of this, the pH influences the effectiveness of pitch retention and removal of pitch. The results indicate that pitch problems could be diminished by acknowledging the importance of pH in various papermaking processes.
Resumo:
Waste combustion has gone from being a volume reducing discarding-method to an energy recovery process for unwanted material that cannot be reused or recycled. Different fractions of waste are used as fuel today, such as; municipal solid waste, refuse derived fuel, and solid recovered fuel. Furthermore, industrial waste, normally a mixture between commercial waste and building and demolition waste, is common, either as separate fuels or mixed with, for example, municipal solid waste. Compared to fossil or biomass fuels, waste mixtures are extremely heterogeneous, making it a complicated fuel. Differences in calorific values, ash content, moisture content, and changing levels of elements, such as Cl and alkali metals, are common in waste fuel. Moreover, waste contains much higher levels of troublesome trace elements, such as Zn, which is thought to accelerate a corrosion process. Varying fuel quality can be strenuous on the boiler system and may cause fouling and corrosion of heat exchanger surfaces. This thesis examines waste fuels and waste combustion from different angles, with the objective of giving a better understanding of waste as an important fuel in today’s fuel economy. Several chemical characterisation campaigns of waste fuels over longer time periods (10-12 months) was used to determine the fossil content of Swedish waste fuels, to investigate possible seasonal variations, and to study the presence of Zn in waste. Data from the characterisation campaigns were used for thermodynamic equilibrium calculations to follow trends and determine the effect of changing concentrations of various elements. The thesis also includes a study of the thermal behaviour of Zn and a full—scale study of how the bed temperature affects the volatilisation of alkali metals and Zn from the fuel. As mixed waste fuel contains considerable amounts of fresh biomass, such as wood, food waste, paper etc. it would be wrong to classify it as a fossil fuel. When Sweden introduced waste combustion as a part of the European Union emission trading system in the beginning of 2013 there was a need for combustion plants to find a usable and reliable method to determine the fossil content. Four different methods were studied in full-scale of seven combustion plants; 14Canalysis of solid waste, 14C-analysis of flue gas, sorting analysis followed by calculations, and a patented balance method that is using a software program to calculate the fossil content based on parameters from the plant. The study showed that approximately one third of the coal in Swedish waste mixtures has fossil origins and presented the plants with information about the four different methods and their advantages and disadvantages. Characterisation campaigns also showed that industrial waste contain higher levels of trace elements, such as Zn. The content of Zn in Swedish waste fuels was determined to be approximately 800 mg kg-1 on average, based on 42 samples of solid waste from seven different plants with varying mixtures between municipal solid waste and industrial waste. A review study of the occurrence of Zn in fuels confirmed that the highest amounts of Zn are present in waste fuels rather than in fossil or biomass fuels. In tires, Zn is used as a vulcanizing agent and can reach concentration values of 9600-16800 mg kg-1. Waste Electrical and Electronic Equipment is the second Zn-richest fuel and even though on average Zn content is around 4000 mg kg-1, the values of over 19000 mg kg-1 were also reported. The increased amounts of Zn, 3000-4000 mg kg-1, are also found in municipal solid waste, sludge with over 2000 mg kg-1 on average (some exceptions up to 49000 mg kg-1), and other waste derived fuels (over 1000 mg kg-1). Zn is also found in fossil fuels. In coal, the average level of Zn is 100 mg kg-1, the higher amount of Zn was only reported for oil shale with values between 20-2680 mg kg-1. The content of Zn in biomass is basically determined by its natural occurrence and it is typically 10-100 mg kg-1. The thermal behaviour of Zn is of importance to understand the possible reactions taking place in the boiler. By using thermal analysis three common Zn-compounds were studied (ZnCl2, ZnSO4, and ZnO) and compared to phase diagrams produced with thermodynamic equilibrium calculations. The results of the study suggest that ZnCl2(s/l) cannot exist readily in the boiler due to its volatility at high temperatures and its conversion to ZnO in oxidising conditions. Also, ZnSO4 decomposes around 680°C, while ZnO is relatively stable in the temperature range prevailing in the boiler. Furthermore, by exposing ZnO to HCl in a hot environment (240-330°C) it was shown that chlorination of ZnO with HCl gas is possible. Waste fuel containing high levels of elements known to be corrosive, for example, Na and K in combination with Cl, and also significant amounts of trace elements, such as Zn, are demanding on the whole boiler system. A full-scale study of how the volatilisation of Na, K, and Zn is affected by the bed temperature in a fluidised bed boiler was performed parallel with a lab-scale study with the same conditions. The study showed that the fouling rate on deposit probes were decreased by 20 % when the bed temperature was decreased from 870°C to below 720°C. In addition, the lab-scale experiments clearly indicated that the amount of alkali metals and Zn volatilised depends on the reactor temperature.
Resumo:
Wastes and side streams in the mining industry and different anthropogenic wastes often contain valuable metals in such concentrations their recovery may be economically viable. These raw materials are collectively called secondary raw materials. The recovery of metals from these materials is also environmentally favorable, since many of the metals, for example heavy metals, are hazardous to the environment. This has been noticed in legislative bodies, and strict regulations for handling both mining and anthropogenic wastes have been developed, mainly in the last decade. In the mining and metallurgy industry, important secondary raw materials include, for example, steelmaking dusts (recoverable metals e.g. Zn and Mo), zinc plant residues (Ag, Au, Ga, Ge, In) and waste slurry from Bayer process alumina production (Ga, REE, Ti, V). From anthropogenic wastes, waste electrical and electronic equipment (WEEE), among them LCD screens and fluorescent lamps, are clearly the most important from a metals recovery point of view. Metals that are commonly recovered from WEEE include, for example, Ag, Au, Cu, Pd and Pt. In LCD screens indium, and in fluorescent lamps, REEs, are possible target metals. Hydrometallurgical processing routes are highly suitable for the treatment of complex and/or low grade raw materials, as secondary raw materials often are. These solid or liquid raw materials often contain large amounts of base metals, for example. Thus, in order to recover valuable metals, with small concentrations, highly selective separation methods, such as hydrometallurgical routes, are needed. In addition, hydrometallurgical processes are also seen as more environmental friendly, and they have lower energy consumption, when compared to pyrometallurgical processes. In this thesis, solvent extraction and ion exchange are the most important hydrometallurgical separation methods studied. Solvent extraction is a mainstream unit operation in the metallurgical industry for all kinds of metals, but for ion exchange, practical applications are not as widespread. However, ion exchange is known to be particularly suitable for dilute feed solutions and complex separation tasks, which makes it a viable option, especially for processing secondary raw materials. Recovering valuable metals was studied with five different raw materials, which included liquid and solid side streams from metallurgical industries and WEEE. Recovery of high purity (99.7%) In, from LCD screens, was achieved by leaching with H2SO4, extracting In and Sn to D2EHPA, and selectively stripping In to HCl. In was also concentrated in the solvent extraction stage from 44 mg/L to 6.5 g/L. Ge was recovered as a side product from two different base metal process liquors with Nmethylglucamine functional chelating ion exchange resin (IRA-743). Based on equilibrium and dynamic modeling, a mechanism for this moderately complex adsorption process was suggested. Eu and Y were leached with high yields (91 and 83%) by 2 M H2SO4 from a fluorescent lamp precipitate of waste treatment plant. The waste also contained significant amounts of other REEs such as Gd and Tb, but these were not leached with common mineral acids in ambient conditions. Zn was selectively leached over Fe from steelmaking dusts with a controlled acidic leaching method, in which the pH did not go below, but was held close as possible to, 3. Mo was also present in the other studied dust, and was leached with pure water more effectively than with the acidic methods. Good yield and selectivity in the solvent extraction of Zn was achieved by D2EHPA. However, Fe needs to be eliminated in advance, either by the controlled leaching method or, for example, by precipitation. 100% Pure Mo/Cr product was achieved with quaternary ammonium salt (Aliquat 336) directly from the water leachate, without pH adjustment (pH 13.7). A Mo/Cr mixture was also obtained from H2SO4 leachates with hydroxyoxime LIX 84-I and trioctylamine (TOA), but the purities were 70% at most. However with Aliquat 336, again an over 99% pure mixture was obtained. High selectivity for Mo over Cr was not achieved with any of the studied reagents. Ag-NaCl solution was purified from divalent impurity metals by aminomethylphosphonium functional Lewatit TP-260 ion exchange resin. A novel preconditioning method, named controlled partial neutralization, with conjugate bases of weak organic acids, was used to control the pH in the column to avoid capacity losses or precipitations. Counter-current SMB was shown to be a better process configuration than either batch column operation or the cross-current operation conventionally used in the metallurgical industry. The raw materials used in this thesis were also evaluated from an economic point of view, and the precipitate from a waste fluorescent lamp treatment process was clearly shown to be the most promising.
Resumo:
Työn aiheena oli tehdä ohut barrierkalvo terä- tai sauvapäällystys menetelmällä. Erilaisissa elintarvikepakkauksissa käytetään hyviä barrier-ominaisuuksia omaavia ohuita päällysteitä. Elintarvikepakkauksen tehtävä on suojata pakattua tuotetta ympäristöltä, mahdollistaa helppo kuljetus ja säilytys sekä antaa tarvittavat tiedot tuotteesta tuotteen käsittelijöille ja loppukäyttäjille. Diplomityön teoriaosuudessa keskityttiin barrierpäällystykseen, eri päällystysmenetelmiin, niiden erityisvaatimuksiin ja ominaisuuksiin. Teoriaosuudessa käsiteltiin myös vaadittavia barrier-ominaisuuksia ja haasteita niiden saavuttamisessa. Kirjallisuuden perusteella haasteiksi nousivat helposti muodostuvat mikroreiät. Kokeellinen osa jakautui kahteen osakokonaisuuteen: laboratoriokokeisiin ja pilot-koeajoon. Laboratoriokokeita tehtiin ennen pilot-ajoa, jotta pilot-koeajoon voitiin valita parhaat päällystereseptit. Pilot-koeajonäytteiden päällystemäärät osoittautuivat liian pieniksi ja siksi laboratoriossa tehtiin jatkotutkimuksia riittävän päällystemäärän saavuttamiseksi. Tämän työnperusteella pohjakartongin ominaisuuksilla, erityisesti karheudella, on merkittävä vaikutus päällystyksen onnistumisessa ja yksinkertaisilla resepteillä ja päällystysmenetelmillä ei saada tarpeeksi laadukasta kalvoa.