36 resultados para Project 2001-002-B : Life Cycle Modelling and Design Knowledge Development in Virtual Environments
Resumo:
This study is a qualitative action research by its nature with elements of personal design in the form of a tangible model implementation framework construction. Utilized empirical data has been gathered via two questionnaires in relation to the arranged four workshop events with twelve individual participants. Five of them represented maintenance customers, three maintenance service providers and four equipment providers respectively. Further, there are two main research objectives in proportion to the two complementary focusing areas of this thesis. Firstly, the value-based life-cycle model, which first version has already been developed prior to this thesis, requires updating in order to increase its real-life applicability as an inter-firm decision-making tool in industrial maintenance. This first research objective is fulfilled by improving appearance, intelligibility and usability of the above-mentioned model. In addition, certain new features are also added. The workshop participants from the collaborating companies were reasonably pleased with made changes, although further attention will be required in future on the model’s intelligibility in particular as main results, charts and values were all reckoned as slightly hard to understand. Moreover, upgraded model’s appearance and added new features satisfied them the most. Secondly and more importantly, the premises of the model’s possible inter-firm implementation process need to be considered. This second research objective is delivered in two consecutive steps. At first, a bipartite open-books supported implementation framework is created and its different characteristics discussed in theory. Afterwards, the prerequisites and the pitfalls of increasing inter-organizational information transparency are studied in empirical context. One of the main findings was that the organizations are not yet prepared for network-wide information disclosure as dyadic collaboration was favored instead. However, they would be willing to share information bilaterally at least. Another major result was that the present state of companies’ cost accounting systems will definitely need implementation-wise enhancing in future since accurate and sufficiently detailed maintenance data is not available. Further, it will also be crucial to create supporting and mutually agreed network infrastructure. There are hardly any collaborative models, methods or tools currently in usage. Lastly, the essential questions about mutual trust and predominant purchasing strategies are cooperation-wise important. If inter-organizational activities are expanded, a more relational approach should be favored in this regard. Mutual trust was also recognized as a significant cooperation factor, but it is hard to measure in reality.
Resumo:
The objective of this thesis is to concretize the potential benefits that the industrial maintenance case network could achieve through using the value-based life-cycle model and the flexible asset management model. It is also inspected what factors prevent value creation and sharing in the maintenance contract practices of the case network. This thesis is a case study which utilizes modelling. Four scenarios were developed to demonstrate value creation in the future. The data was partly provided by the collaborating company, partly gathered from public financial statement information. The results indicate that value has been created through the past maintenance of the collaborating company’s rod mill and that profitability of the collaborating company has been mostly on satisfactory level during the past few years. Potential value might be created by increasing the share of proactive maintenance of the rod mill in the future. Profitability of the network could be improved in the future through flexible asset management operations. The main obstacle for value creation and sharing seems to be the lack of sufficient trust between the network members.
Resumo:
Human activity recognition in everyday environments is a critical, but challenging task in Ambient Intelligence applications to achieve proper Ambient Assisted Living, and key challenges still remain to be dealt with to realize robust methods. One of the major limitations of the Ambient Intelligence systems today is the lack of semantic models of those activities on the environment, so that the system can recognize the speci c activity being performed by the user(s) and act accordingly. In this context, this thesis addresses the general problem of knowledge representation in Smart Spaces. The main objective is to develop knowledge-based models, equipped with semantics to learn, infer and monitor human behaviours in Smart Spaces. Moreover, it is easy to recognize that some aspects of this problem have a high degree of uncertainty, and therefore, the developed models must be equipped with mechanisms to manage this type of information. A fuzzy ontology and a semantic hybrid system are presented to allow modelling and recognition of a set of complex real-life scenarios where vagueness and uncertainty are inherent to the human nature of the users that perform it. The handling of uncertain, incomplete and vague data (i.e., missing sensor readings and activity execution variations, since human behaviour is non-deterministic) is approached for the rst time through a fuzzy ontology validated on real-time settings within a hybrid data-driven and knowledgebased architecture. The semantics of activities, sub-activities and real-time object interaction are taken into consideration. The proposed framework consists of two main modules: the low-level sub-activity recognizer and the high-level activity recognizer. The rst module detects sub-activities (i.e., actions or basic activities) that take input data directly from a depth sensor (Kinect). The main contribution of this thesis tackles the second component of the hybrid system, which lays on top of the previous one, in a superior level of abstraction, and acquires the input data from the rst module's output, and executes ontological inference to provide users, activities and their in uence in the environment, with semantics. This component is thus knowledge-based, and a fuzzy ontology was designed to model the high-level activities. Since activity recognition requires context-awareness and the ability to discriminate among activities in di erent environments, the semantic framework allows for modelling common-sense knowledge in the form of a rule-based system that supports expressions close to natural language in the form of fuzzy linguistic labels. The framework advantages have been evaluated with a challenging and new public dataset, CAD-120, achieving an accuracy of 90.1% and 91.1% respectively for low and high-level activities. This entails an improvement over both, entirely data-driven approaches, and merely ontology-based approaches. As an added value, for the system to be su ciently simple and exible to be managed by non-expert users, and thus, facilitate the transfer of research to industry, a development framework composed by a programming toolbox, a hybrid crisp and fuzzy architecture, and graphical models to represent and con gure human behaviour in Smart Spaces, were developed in order to provide the framework with more usability in the nal application. As a result, human behaviour recognition can help assisting people with special needs such as in healthcare, independent elderly living, in remote rehabilitation monitoring, industrial process guideline control, and many other cases. This thesis shows use cases in these areas.
Resumo:
Transmission system operators and distribution system operators are experiencing new challenges in terms of reliability, power quality, and cost efficiency. Although the potential of energy storages to face those challenges is recognized, the economic implications are still obscure, which introduce the risk into the business models. This thesis aims to investigate the technical and economic value indicators of lithium-ion battery energy storage systems (BESS) in grid-scale applications. In order to do that, a comprehensive performance lithium-ion BESS model with degradation effects estimation is developed. The model development process implies literature review on lifetime modelling, use, and modification of previous study progress, building the additional system parts and integrating it into a complete tool. The constructed model is capable of describing the dynamic behavior of the BESS voltage, state of charge, temperature and capacity loss. Five control strategies for BESS unit providing primary frequency regulation are implemented, in addition to the model. The questions related to BESS dimensioning and the end of life (EoL) criterion are addressed. Simulations are performed with one-month real frequency data acquired from Fingrid. The lifetime and cost-benefit analysis of the simulation results allow to compare and determine the preferable control strategy. Finally, the study performs the sensitivity analysis of economic profitability with variable size, EoL and system price. The research reports that BESS can be profitable in certain cases and presents the recommendations.
Resumo:
Tämä diplomityö tutkii eri elinkaarihallinnan menetelmiä ja vertaa niitä TVO:n menetelmiin. Lisäksi TVO:n prosessin ongelmakohdat tunnistetaan ja niihin esitetään ratkaisuja. Vertailukohteina toimii ydinvoimateollisuuden lisäksi vesivoima, fossiiliset voimalaitokset sekä paperiteollisuus. Sähkön hinnan jatkaessa laskuaan on elinkaariajattelusta tullut ajankohtaista myös ydinvoimayhtiöille. Ydinvoimalaitoksien pitkän suunnitellun käyttöiän ansiosta laitoksen elinkaaren aikana voi tapahtua useita asioita, jotka vaikuttavat laitoksen investointitarpeisiin. Turvallisen sähköntuotannon varmistamiseksi eri laitososia on joko muokattava tai uusittava. Elinkaariajatteluun kuuluu tehokas laitoksen kunnon valvonta, laitoksen ikääntymiseen vaikuttavien ilmiöiden tunnistaminen, sekä ikääntymistä hillitsevien toimenpiteiden pitkän tähtäimen suunnittelu. Hyvällä ennakkosuunnittelulla pyritään varmistamaan se, että laitoksella voidaan tuottaa sähköä koko sen jäljellä olevan käyttöiän aikana. Kun tarpeiden tunnistus ja suunnittelu tehdään hyvissä ajoin mahdollistetaan myös investointien optimointi. Paras hyöty pyritään saamaan ajoittamalla oikeat investoinnit oikeaan aikaan.
Resumo:
Selostus: Valuma-aluetason mallisovellus suojakaistojen käytöstä eroosion torjunnassa