55 resultados para Organic foods
Resumo:
Adsorption is one of the most commonly used methods in water treatment processes. It is attractive due to it easy operation and the availability of a wide variety of commercial adsorbents. This doctoral thesis focuses on investigating and explaining the influence of external phase conditions (temperature, pH, ionic strength, acidity, presence of cosolutes) on adsorption phenomena. In order to cover a wide range of factors and phenomena, case studies were chosen from various fields where adsorption is applied. These include the adsorptive removal of surface active agents (used in cleaning chemicals, for example) from aqueous effluents, the removal of hormones (estradiol) from drinking water, and the adsorption of antibiotics onto silica. The latter can beused to predict the diffusion of antibiotics in the aquatic system if they are released into the environment. Also the adsorption of living cells on functionalized polymers to purify infected water streams was studied. In addition to these examples, the adsorptive separation of harmful compounds from internal water streams within a chemical process was investigated. The model system was removal of fermentation inhibitors from lignocelluloses hydrolyzates. The detoxification of the fermentation broth is an important step in the manufacture of bioethanol from wood, but has not been studied previously in connection with concentrated acid hydrolyzates. New knowledge on adsorption phenomena was generated for all of the applications investigated. In most cases, the results could be explained by combining classical theories for individual phenomena. As an example, it was demonstrated how liquid phase aggregation could explain abnormal-looking adsorption equilibrium data. In addition to the fundamental phenomena, also process performance was of interest. This aspect is often neglected in adsorption studies. It was demonstrated that adsorbents should not be selected for a target application based on their adsorption properties only, but regeneration of the spent adsorbent must be considered. It was found that using a suitable amount of organic co-solvent in the regeneration can significantly improve the productivity of the process.
Resumo:
This MSc work was done in the project of BIOMECON financed by Tekes. The prime target of the research was, to develop methods for separation and determination of carbohydrates (sugars), sugar acids and alcohols, and some other organic acids in hydrolyzed pulp samples by capillary electrophoresis (CE) using UV detection. Aspen, spruce, and birch pulps are commonly used for production of papers in Finland. Feedstock components in pulp predominantly consist of carbohydrates, organic acids, lignin, extractives, and proteins. Here in this study, pulps have been hydrolyzed in analytical chemistry laboratories of UPM Company and Lappeenranta University in order to convert them into sugars, acids, alcohols, and organic acids. Foremost objective of this study was to quantify and identify the main and by-products in the pulp samples. For the method development and optimization, increased precision in capillary electrophoresis was accomplished by calculating calibration data of 16 analytes such as D-(-)-fructose, D(+)-xylose, D(+)-mannose, D(+)-cellobiose, D-(+)-glucose, D-(+)-raffinose, D(-)-mannitol, sorbitol, rhamnose, sucrose, xylitol, galactose, maltose, arabinose, ribose, and, α-lactose monohydratesugars and 16 organic acids such as D-glucuronic, oxalic, acetic, propionic, formic, glycolic, malonic, maleic, citric, L-glutamic, tartaric, succinic, adipic, ascorbic, galacturonic, and glyoxylic acid. In carbohydrate and polyalcohol analyses, the experiments with CE coupled to direct UV detection and positive separation polarity was performed in 36 mM disodium hydrogen phosphate electrolyte solution. For acid analyses, CE coupled indirect UV detection, using negative polarity, and electrolyte solution made of 2,3 pyridinedicarboxylic acid, Ca2+ salt, Mg2+ salts, and myristyltrimethylammonium hydroxide in water was used. Under optimized conditions, limits of detection, relative standard deviations and correlation coefficients of each compound were measured. The optimized conditions were used for the identification and quantification of carbohydrates and acids produced by hydrolyses of pulp. The concentrations of the analytes varied between 1 mg – 0.138 g in liter hydrolysate.
Resumo:
I likhet med vanliga plaster är de π-konjugerade polymererna flexibla, lösliga och processbara vid låga temperaturer (< 150 ºC). Därutöver har de egenskapen att leda ström. Konduktivitetsintervallet är brett och omfattar nästintill metallisk ledningsförmåga å ena sidan, via halvledarkonduktiva till isolerande å andra sidan. Polymererna utgörs av regelbundna kedjor av kolatomer och associeras sålunda till organiska material. Sedan de första vetenskapliga rapporterna publicerades vid slutet av 1970-talet har π-konjugerade polymerer använts och utvecklats i exempelvis solceller, dioder, lysdioder och transistorer. Nobelpriset i kemi tilldelades år 2000 åt Hideki Shirakawa, Alan J. Heeger och Alan G. MacDiarmid för upptäckten och utvecklandet av ledande polymerer. I min avhandling har jag arbetat med att utveckla och förstå lågspännings jonmodulerade organiska transistorer. Två typer av jonmodulerade organiska transistorer studeras: (1) den jonmodulerade organiska fälteffekt transistorn (jonmodulerade OFETen), som utgör den centrala transistorn i avhandlingen, samt (2) den elektrokemiska transistorn. Den första typen fungerar som en konventionell OFET. Strömmen i halvledaren moduleras av det elektriska fältet över isolatorn. Med användandet av en elektrolyt ”isolator” orsakar polariseringen av jonerna däremot ett högt elektriskt fält vid elektrolyt/halvledargränssnittet och man åstadkommer modulering av strömmen redan vid några volts drivspänningar. I den andra typen utnyttjas elektrokemi för att medelst reduktion/oxidation modulera strömmen i den π-konjugerade polymeren. Ett viktigt ändamål i avhandlingen har också varit att kunna tillverka transistorerna med masstillverkningsmetoder. I avhandlingen presenteras de jonmodulerade organiska transistorernas möjlighet att framställas med masstillverkningsmetoder. Nya koncept introduceras och svagheter identifieras. Skillnaderna mellan OFETen, jonmodulerade OFETen och den elektrokemiska transistorn klargörs. Arbetet skall däremot inte anses fullbordat utan forskningen fortgår för att kringgå svagheterna, öka på transistorernas stabilitet och framförallt tillämpa dem i innovativa applikationer.
Resumo:
Immobilization of Burkholderia cepacia Lipase: Kinetic Resolution in Organic Solvents, Ionic Liquids and in Their Mixtures Biocatalysis opens the door to green and sustainable processes in synthetic chemistry allowing the preparation of single enantiomers, since the enzymes are chiral and accordingly able to catalyze chemical reactions under mild conditions. Immobilization of enzymes enhances process robustness, often stabilizes and activates the enzyme, and enables reuse of the same enzyme preparation in multiple cycles. Although hundreds of variations of immobilization methods exist, there is no universal method to yield the highly active, selective and stable enzyme catalysts. Therefore, new methods need to be developed to obtain suitable catalysts for different substrates and reaction environments. Lipases are the most widely used enzymes in synthetic organic chemistry. The literature part together with the experimental part of this thesis discusses of the effects of immobilization methods mostly used to enhance lipase activity, stability and enantioselectivity. Moreover, the use of lipases in the kinetic resolution of secondary alcohols in organic solvents and in ionic liquids is discussed. The experimental work consists of the studies of immobilization of Burkholderia cepacia lipase (lipase PS) using three different methods: encapsulation in sol-gels, cross-linked enzyme aggregates (CLEAs) and supported ionic liquids enzyme catalysts (SILEs). In addition, adsorption of lipase PS on celite was studied to compare the results obtained with sol-gels, CLEAs and SILEs. The effects of immobilization on enzyme activity, enantioselectivity and hydrolysis side reactions were studied in kinetic resolution of three secondary alcohols in organic solvents, in ionic liquids (ILs), and in their mixtures. Lipase PS sol-gels were shown to be active and stable catalysts in organic solvents and solvent:IL mixtures. CLEAs and SILEs were highly active and enantioselective in organic solvents. Sol-gels and SILEs were reusable in several cycles. Hydrolysis side reaction was suppressed in the presence of sol-gels and CLEAs.
Resumo:
Astringency is traditionally thought to be induced by plant tannins in foods. Because of this current research concerning the mechanism of astringency is focused on tannin‐protein interactions and thus on precipitation, which may be perceived by mechanoreceptors. However, astringency is elicited by a wide range of different phenolic compounds, as well as, some non‐phenolic compounds in various foods. Many ellagitannins or smaller compounds that contribute to astringent properties do not interact with salivary proteins and may be directly perceived through some receptors. Generally, the higher degree of polymerization of proanthocyanidins can be associated with more intense astringency. However, the astringent properties of smaller phenolic compounds may not be directly predicted from the structure of a compound, although glycosylation has a significant role. The astringency of organic acids may be directly linked to the perception of sourness, and this increases along with decreasing pH. Astringency can be divided into different sub‐qualities, including even other qualities than traditional mouth‐drying, puckering or roughing sensations. Astringency is often accompanied by bitter or sour or both taste properties. The different sub‐qualities can be influenced by different astringent compounds. In general, the glycolysation of the phenolic compound results in more velvety and smooth mouthdrying astringency. Flavonol glycosides and other flavonoid compounds and ellagitannins contribute to this velvety mouthdrying astringency. Additionally, they often lack the bitter properties. Proanthocyanidins and phenolic acids elicit more puckering and roughing astringency with some additional bitter properties. Quercetin 3‐O‐rutinoside, along with other quercetin glycosides, is among the key astringent compounds in black tea and red currants. In foods, there are always various other additional attributes that are perceived at the same with astringency. Astringent compounds themselves may have other sensory characteristics, such as bitter or sour properties, or they may enhance or suppress other sensory properties. Components contributing to these other properties, such as sugars, may also have similar effects on astringent sensations. Food components eliciting sweetness or fattiness or some polymeric polysaccharides can be used to mask astringent subqualities. Astringency can generally be referred to as a negative contributor to the liking of various foods. On the other hand, perceptions of astringent properties can vary among individuals. Many genetic factors that influence perceptions of taste properties, such as variations in perceiving a bitter taste or variations in saliva, may also effect the perception of astringency. Individuals who are more sensitive to different sensations may notice the differences between astringent properties more clearly. This may not have effects on the overall perception of astringency. However, in many cases, the liking of astringent foods may need to be learned by repetitive exposure. Astringency is often among the key sensory properties forming the unique overall flavour of certain foods, and therefore it also influences whether or not a food is liked. In many cases, astringency may be an important sub‐property suppressed by other more abundant sensory properties, but it may still have a significant contribution to the overall flavour and thus consumer preferences. The results of the practical work of this thesis show that the astringent phenolic compounds are mostly located in the skin fractions of black currants, crowberries and bilberries (publications I–III). The skin fractions themselves are rather tasteless. However, the astringent phenolic compounds can be efficiently removed from these skin fractions by consecutive ethanol extractions. Berries contain a wide range of different flavonol glycosides, hydroxycinnamic acid derivatives and anthocyanins and some of them strongly contribute to the different astringent and bitterness properties. Sweetness and sourness are located in the juice fractions along with the majority of sugars and fruit acids. The sweet and sour properties of the juice may be used to mask the astringent and bitterness properties of the extracts. Enzymatic treatments increase the astringent properties and fermented flavour of the black currant juice and decrease sweetness and freshness due to the effects on chemical compositions (IV). Sourness and sweetness are positive contributors to the liking of crowberry and bilberry fractions, whereas bitterness is more negative (V). Some astringent properties in berries are clearly negative factors, whereas some may be more positive. The liking of berries is strongly influenced by various consumer background factors, such as motives and health concerns. The liking of berries and berry fractions may also be affected by genetic factors, such as variations in the gene hTAS2R38, which codes bitter taste receptors (V).
Resumo:
The main advantage of organic electronics over the more widespread inorganic counterparts lies not in the electrical performance, but rather in the solution processability that opens up for low-cost flexible electronics (e.g. displays, sensors and smart tags) fabricated by using printing techniques. Replacing the commonly used laboratory-scale fabrication techniques with mass-printing techniques is, however, truly challenging, especially when low-voltage operation is required. In this thesis it is, nevertheless, demonstrated that low-voltage organic transistors can be fully printed with a similar performance to that of transistors made by laboratory scale techniques. The use of an ion-modulated type of organic field effect transistor (OFET) not only enabled low-voltage operation and printability, but was also found to result in low sensitivity to the surface roughness of the substrate. This allows not only the use of low-cost plastic substrates, but even the use of paper as a substrate. However, while absorption into the porous paper surface is advantageous in a graphical printing process, by reducing the spreading and the coffee-stain effect and by improving the adhesion, it provides great challenges when applying thin electrically active layers. In spite of these difficulties we were able to demonstrate the first low-voltage OFET to be fabricated on paper. We have also shown that low-cost incandescent lamps can be used for sintering printed metal-nanoparticles, and that the process was especially suitable on paper and compatible with a roll-to-roll manufacturing process.
Resumo:
Solceller presenteras ofta som ett miljövänligt alternativ för energiproduktion. Det största hindret för en bredare ibruktagning av kiselbaserade solceller är deras höga pris. I och med upptäckten av ledande och halvledande organiska (kolbaserade) molekyler och polymerer har ett nytt forskningsområde, organisk elektronik, vuxit fram. Den stora fördelen med organisk elektronik är att de använda materialen oftast är lösliga. Tillverkning av elektroniska komponenter kan då göras med hjälp av konventionella trycktekniker där bläcket ersatts med upplösta organiska material. Detta har potential att betydligt sänka priset för solceller. Nackdelen med organisk elektronik är att de använda materialen är komplexa, och de fysikaliska processerna i dem likaså. I min avhandling har jag studerat fotofysiken i två polymerer, P3HT och APFO3, som kan användas för att tillverka organiska solceller. Blandade med fullerenderivatet PCBM, som är en stark elektronacceptor, fås ett material som effektivt producerar elektroner och hål under belysning. I praktiken bidrar dock inte alla skapade laddningar till strömmen ur solcellen. Elektronerna och hålen kan förbli bundna till varandra i olika exciterade tillstånd, och även de som är fria kan träffa på motsatta laddningar under vägen till kontakterna och rekombinera. Centralt i mitt arbete har varit att identifiera olika typer av exciterade tillstånd i dessa solcellsmaterial, samt att bestämma deras livstider och rekombination. Metoden för detta har varit s.k. fotoinducerad absorption, som mäter fotoexcitationernas absorptioner i infraröda våglängdsområdet. De två viktigaste resultaten som presenteras i avhandlingen är en ratekvationsmodell för fotoexcitationsdynamiken i APFO3 på ultrasnabba tidsskalor (femtosekund - microsekund) och bildandet av en rekombinationshämmande dipol vid gränsytan för P3HT och PCBM som följd av värmebehandling. Dessa resultat bidrar till förståelsen av de fotofysikaliska processerna i relaterade material.
Resumo:
In this thesis, biocatalysis is defined as the science of using enzymes as catalysts in organic synthesis. Environmental aspects and the continuously expanding repertoire of available enzymes have firmly established biocatalysis as a prominent means of chemo-, regio- and stereoselective synthesis. Yet, no single methodology can solve all the challenges faced by a synthetic chemist. Therefore, the knowledge and the skills to combine different synthetic methods are relevant. Lipases are highly useful enzymes in organic synthesis. In this thesis, an effort is being made to form a coherent picture of when and how can lipases be incorporated into nonenzymatic synthesis. This is attempted both in the literature review and in the discussion of the results presented in the original publications contained in the thesis. In addition to lipases, oxynitrilases were also used in the work. The experimental part of the thesis comprises of the results reported in four peer-reviewed publications and one manuscript. Selected amines, amino acids and sugar-derived cyanohydrins or their acylated derivatives were each prepared in enantio- or diastereomerically enriched form. Where applicable, attempts were made to combine the enzymatic reactions to other synthetic steps either by the application of completely separate sequential reactions with isolated intermediates (kinetic and functional kinetic resolution of amines), simultaneously occurring reactions without intermediate isolation (dynamic kinetic resolution of amino acid esters) or sequential reactions but without isolating the intermediates (hydrocyanation of sugar aldehydes with subsequent diastereoresolution). In all cases, lipase-catalyzed acylation was the key step by which stereoselectivity was achieved. Lipase from Burkholderia cepacia was a highly selective enzyme with each substrate category, but careful selection of the acyl donor and the solvent was important as well.
Resumo:
Työn tarkoituksena oli kehittää analyyttinen erotusmenetelmä eräässä valmistusprosessissa käytettävän hapettavan aineen ja liuottimen välillä syntyvien reaktiotuotteiden tutkimiseen ja analysoimiseen. Lisäksi tarkoituksena oli tutkia prosessiolosuhteiden turvallisuutta. Kirjallisuusosassa käsitellään erilaisia orgaanisia peroksideja, niiden käyttötarkoituksia ja niiden käyttöön liittyviä huomioitavia asioita. Lisäksi tarkastellaan yleisimpiä analyysimenetelmiä, joita on käytetty erilaisten peroksidien analysoinnissa. Näitä analyysimenetelmiä on useimmiten käytetty nestemäisten näytteiden tutkimuksissa. Harvemmin on analysoitu kaasu- ja kiintoainenäytteitä. Kokeellisessa osassa kehitettiin kirjallisuuden perusteella peroksidiyhdisteille identifiointimenetelmä ja tutkittiin prosessin näytteet. Analyysimenetelmiksi valittiin iodometrinen titraus ja HPLC-UV-MS-menetelmä. Lisäksi käytettiin peroksidimittaukseen soveltuvia testiliuskoja. Tutkimus osoitti, että iodometrisen titrauksen ja testiliuskojen perusteella näytteissä oli vähäisiä määriä peroksideja viikon jälkeen peroksidilisäyksestä. HPLC-UV-MS-analyysien perusteella näytteiden analysointia häiritsi selluloosa, jota löytyi jokaisesta näytteestä.
Resumo:
Advanced oxidation processes (AOPs) have been studied and developed to suffice the effective removal of refractory and toxic compounds in polluted water. The quality and cost of wastewater treatment need improvements, and electric discharge technology has a potential to make a significant difference compared to other established AOPs based on energy efficiency. The generation of active oxidant species such as ozone and hydroxyl radicals by high voltage discharge is a relatively new technology for water treatment. Gas-phase pulsed corona discharge (PCD), where a treated aqueous solution is dispersed between corona-producing electrodes free of the dielectric barriers, was developed as an alternative approach to the problem. The short living radicals and ozone formed in the gas phase and at the gas-liquid interface react with dissolved impurities. PCD equipment has a relatively simple configuration, and with the reactor in an enclosed compartment, it is insensitive towards gas humidity and does not need the gas transport. In this thesis, PCD was used to study and evaluate the energy efficiency for degrading various organic compounds, as well as the chemistry of the oxidation products formed. The experiments investigate the aqueous oxidation of phenol, humic substances, pharmaceutical compounds (paracetamol, ibuprofen, indomethacin, salicylic acids, -estradiol), as well as lignin degradation and transformation to aldehydes. The study aims to establish the influence of initial concentration of the target pollutant, the pulsed discharge parameters, gas phase composition and the pH on the oxidation kinetics and the efficiency. Analytical methods to measure the concentrations of the target compounds and their by-products include HPLC, spectrophotometry, TOC and capillary electrophoresis. The results of the research included in this summary are presented in the attached publications and manuscripts accepted for publication. Pulsed corona discharge proved to be highly effective in oxidizing each of the target compounds, surpassing the closest competitor, conventional ozonation. The increase in oxidation efficiencies for some compounds in oxygen media and at lower pulse repetition frequencies shows a significant role of ozone. The role of the ·OH radicals was established in the surface reactions. The main oxidation products, formation of nitrates, and the lignin transformation were quantified. A compound specific approach is suggested for optimization of the PCD parameters that have the most significant impact on the oxidation energy efficiency because of the different characteristics and responses of the target compound to the oxidants, as well as different admixtures that are present in the wastewater. Further studies in the method’s safety (nitration and nitrosation of organic compounds, nitrite and nitrate formation enhancement) are needed for promoting the method.
Resumo:
The sustainable management of municipal solid waste in the Kathmandu Valley has always been a challenging task. Solid waste generation has gone rapidly high in the Kathmandu Valley over the last decade due to booming population and rapid urbaniza-tion. Finding appropriate landfill sites for the disposal of solid wastes generated from the households of the Kathmandu Valley has always been a major problem for Nepalese government. 65 % of total generated wastes from the households of Nepal consist of organic materials. As large fractions of generated household wastes are organic in na-ture, composting can be considered as one of the best sustainable ways to recycle organ-ic wastes generated from the households of Nepal. Model Community Society Development (MCDS), a non-governmental organization of Nepal carried out its small-scale project in five households of the Kathmandu Valley by installing composting reactors. This thesis is based on this small-scale project and has used secondary data provided by MCDS Nepal for carrying out the study. Proper man-agement of organic wastes can be done at household levels through the use of compost-ing reactors. The end product compost can be used as soil conditioners for agricultural purposes such as organic farming, roof-top farming and gardening. The overall average organic waste generation in the Kathmandu Valley is found to be 0,23 kg/person/day and the total amount of organic household wastes generated in the Kathmandu Valley is around 210 Gg/yr. Produced composts from five composting reac-tors contain high amount of moistures but have sufficient amount of nutrients required for the fertility of land and plant growth. Installation of five composting reactors in five households have prevented 2,74 Mg of organic wastes going into the landfills, thus re-ducing 107 kg of methane emissions which is equivalent to 2,7 Mg of carbondioxide.
Resumo:
Organic farming is perceived to be an environmental friendly method of food production, thus assumed to be an alternative means of minimizing food-based environmental footprints. However, lower yield and unproductive years in organic crop rotation raise questions of whether it is really an environmentally friendly farming practice. Thus, the aim of this thesis was to examine the carbon footprint and energy demands of organic carrots cultivated and sold in South-Savo, Finland and compare them with those of local and imported conventional carrots using lifecycle assessment (LCA) as a method. From the investigation, it was found that organic carrots produced in South-Savo have the lowest GHG emissions and energy demand. The GHG emissions of local organic, local conventional and imported conventional carrots were found to be 4g CO2 eq. kgcarrots-1, 142g CO2 eq. kgcarrots-1 and 280 g CO2 eq. kgcarrots-1, respectively. On the other hand, energy demand for those carrots was found to be 1,33 MJ, 1,88 MJ and 3,68 MJ kgcarrots-1. Furthermore, it was also found that local organic carrots would have approximately similar GHG emissions as conventional counterpart if soil carbon stock change was excluded from the study.
Resumo:
Electrokinetics has emerged as a potential technique for in situ soil remediation and especially unique because of the ability to work in low permeability soil. In electrokinetic remediation, non-polar contaminants like most organic compounds are transported primarily by electroosmosis, thus the process is effective only if the contaminants are soluble in pore fluid. Therefore, enhancement is needed to improve mobility of these hydrophobic compounds, which tend to adsorb strongly to the soil. On the other hand, as a novel and rapidly growing science, the applications of ultrasound in environmental technology hold a promising future. Compared to conventional methods, ultrasonication can bring several benefits such as environmental friendliness (no toxic chemical are used or produced), low cost, and compact instrumentation. It also can be applied onsite. Ultrasonic energy applied into contaminated soils can increase desorption and mobilization of contaminants and porosity and permeability of soil through developing of cavitation. The research investigated the coupling effect of the combination of these two techniques, electrokinetics and ultrasonication, in persistent organic pollutant removal from contaminated low permeability clayey soil (with kaolin as a model medium). The preliminary study checked feasibility of ultrasonic treatment of kaolin highly contaminated by persistent organic pollutants (POPs). The laboratory experiments were conducted in various conditions (moisture, frequency, power, duration time, initial concentration) to examine the effects of these parameters on the treatment process. Experimental results showed that ultrasonication has a potential to remove POPs, although the removal efficiencies were not high with short duration time. The study also suggested intermittent ultrasonication over longer time as an effective means to increase the removal efficiencies. Then, experiments were conducted to compare the performances among electrokinetic process alone and electrokinetic processes combined with surfactant addition and mainly with ultrasonication, in designed cylinders (with filtercloth separating central part and electrolyte parts) and in open pans. Combined electrokinetic and ultrasonic treatment did prove positive coupling effect compared to each single process alone, though the level of enhancement is not very significant. The assistance of ultrasound in electrokinetic remediation can help reduce POPs from clayey soil by improving the mobility of hydrophobic organic compounds and degrading these contaminants through pyrolysis and oxidation. Ultrasonication also sustains higher current and increases electroosmotic flow. Initial contaminant concentration is an essential input parameter that can affect the removal effectiveness.