276 resultados para Nuclear power plant
Resumo:
Diplomityössä on tutustuttu ydinvoimalaitosten paloriskejä käsittelevään todennäköisyyspohjaiseen turvallisuusanalyysiin. Tavoitteena on ollut Olkiluoto 1 ja 2 laitosyksiköiden paloanalyysimenetelmän kehittäminen. Työssä esitetään paloanalyysin pääpiirteet, kaksi erilaista palotaajuuksien estimointimenetelmää sekä palojen leviämisen arviointimenetelmiä. Palotaajuuksien estimointimenetelmistä keskitytään Berryn menetelmän sekä NUREG/CR-6850-palotaajuuslaskentamenetelmän tarkasteluun. Palon leviämisen arvioinnissa on esitetty kolmen erilaisen virtausteknisen laskentatyökalun perusteet sekä palon leviämistodennäköisyyksiä arvioivan Probabilistic Fire Simulator (PFS) -ohjelman käyttöä. Työn aikana on laskettu molemmilla palotaajuuden estimointimenetelmillä palotaajuuksia eri tyyppisille huonetiloille. Berryn menetelmän palotaajuudet olivat pääosin alhaisempia kuin NUREG/CR-6850-menetelmällä lasketut palotaajuudet. Palon leviämistarkastelussa on tutkittu ydinvoimalaitoksen relehuoneen tulipaloa. PFS:n avulla laskettujen leviämistodennäköisyyksien arvoja on vertailtu TVO:n paloanalyysissa käytettyihin kvalitatiivisiin peittokertoimiin. Palon leviämistodennäköisyys eri osajärjestelmien välillä todettiin suuresti riippuvan analyysissaoletetuista vaurioitumislämpötiloista. Tutkittuja menetelmiä hyödyntäen diplomityössä kehitettiin paloanalyysimenetelmäkuvaus. Menetelmäkuvauksessa huonetilojen paloriskit kartoitetaan aluksi Berryn menetelmällä. Näin kaikille laitoksen huonetiloille saadaan arvioitua palotaajuus sekä paloalkutapahtumaluokkien sydänvauriotaajuus. Seuraavaksi suoritetaan valintamenettely, jossa valitut kriteerit täyttäville huonetiloille tehdään tarkentava palotaajuuslaskenta. Tarkentava palotaajuuslaskenta perustuu NUREG/CR-6850-menetelmän mukaisesti huonetilojen realistisiin syttymislähteisiin. Kriittisimpien huonetilojen osalta palon leviämisen arviointiin on tarkoitus hyödyntää numeerista simulointia.
Resumo:
Työn tavoitteena oli tehdä Apros-laskentamalli PKL-koelaitteistosta ja testata kuinka hyvin Apros pystyy laskemaan PKL-koelaitteistolla suoritetun E2.2 pienen vuodon kokeen. Tavoitteena oli myös tarkastella boorittoman veden tulpan etenemistä pienen vuodon kokeen aikana. PKL-koelaitteisto vastaa saksalaista sähköteholtaan 1300 MW olevaa Philippsburg 2 painevesilaitosta. Koelaitteiston tilavuudet ja teho on skaalattu kertoimella 145. Työssä tehdyllä laskentamallilla tarkasteltiin boorittoman veden tulpan liikkumista pienen vuodon kokeen aikana. Kun malli oli valmis, laskenta suoritettiin Apros 5.05 versiolla. Boorittoman veden tulpan etenemisen laskennassa käytettiin toisen kertaluvun diskretointia, jolla booripitoisuuden muutokset säilyvät teräväreunaisina. Laskentamalli pystyi kuvaamaan koelaitteistolla suoritetussa pienen vuodon kokeessa tapahtuneet ilmiöt varsin hyvin. Eroa koetuloksiintuli pääkiertopiirien luonnonkiertojen alkamishetkistä ja primääripaineen käyttäytymisessä. Kokeen alkutilanne ei ollut stationääritila, joten alkutilanteen asettamisessa oli hankaluuksia. Varsinkin pääkiertopiirien veden pinnankorkeuksienasettamisessa oli vaikeuksia, koska veden pinnankorkeuksien erot pyrkivät tasoittumaan nopeasti kokeen aikana. Apros pystyi laskemaan PKL-koelaitteistolla suoritetun pienen vuodon kokeen hyvin. Mallilla tulisi kuitenkin laskea vielä toisentyyppisiäkin kokeita, ennen kuin voidaan varmuudella tietää mallin toimivuus. PKL-koelaitteisto vastaa pääpiirteiltään Suomeen rakennettavaa Olkiluoto 3 ydinvoimalaitosta. Tehty työ antaa lisävarmuutta, kun Olkiluoto 3 laitoksen turvallisuustarkasteluita tehdään.
Resumo:
Uusi EPR-reaktorikonsepti on suunniteltu selviytymään tapauksista, joissa reaktorinsydän sulaa ja sula puhkaisee paineastian. Suojarakennuksen sisälle on suunniteltu alue, jolle sula passiivisesti kerätään, pidätetään ja jäähdytetään. Alueelle laaditaan valurautaelementeistä ns.sydänsieppari, joka tulvitetaan vedellä. Sydänsulan tuottama jälkilämpö siirtyyveteen, mistä se poistetaan suojarakennuksen jälkilämmönpoistojärjestelmän kautta. Suuri osa lämmöstä poistuu sydänsulasta sen yläpuolella olevaan veteen, mutta lämmönsiirron tehostamiseksi myös sydänsiepparin alapuolelle on sijoitettu vedellä täytettävät jäähdytyskanavat. Jotta sydänsiepparin toiminta voitaisiin todentaa, on Lappeenrannan Teknillisellä Yliopistolla rakennettu Volley-koelaitteisto tätä tarkoitusta varten. Koelaitteisto koostuu kahdesta täysimittaisesta valuraudasta tehdystä jäähdytyskanavasta. Sydänsulan tuottamaa jälkilämpöä simuloidaan koelaitteistossa sähkövastuksilla. Tässä työssä kuvataan simulaatioiden suorittaminen ja vertaillaan saatuja arvoja mittaustuloksiin. Työ keskittyy sydänsiepparista jäähdytyskanaviin tapahtuvan lämmönsiirron teoriaan jamekanismeihin. Työssä esitetään kolme erilaista korrelaatiota lämmönsiirtokertoimille allaskiehumisen tapauksessa. Nämä korrelaatiot soveltuvat erityisesti tapauksiin, joissa vain muutamia mittausparametreja on tiedossa. Työn toinen osa onVolley 04 -kokeiden simulointi. Ensin käytettyä simulointitapaa on kelpoistettuvertaamalla tuloksia Volley 04 ja 05 -kokeisiin, joissa koetta voitiin jatkaa tasapainotilaan ja joissa jäähdytteen käyttäytyminen jäähdytyskanavassa on tallennettu myös videokameralla. Näiden simulaatioiden tulokset ovat hyvin samanlaisiakuin mittaustulokset. Korkeammilla lämmitystehoilla kokeissa esiintyi vesi-iskuja, jotka rikkoivat videoinnin mahdollistavia ikkunoita. Tämän johdosta osassa Volley 04 -kokeita ikkunat peitettiin metallilevyillä. Joitakin kokeita jouduttiin keskeyttämään laitteiston suurten lämpöjännitysten johdosta. Tällaisten testien simulaatiot eivät ole yksinkertaisia suorittaa. Veden pinnan korkeudesta ei ole visuaalista havaintoa. Myöskään jäähdytteen tasapainotilanlämpötiloista ei ole tarkkaa tietoa, mutta joitakin oletuksia voidaan tehdä samoilla parametreilla tehtyjen Volley 05 -kokeiden perusteella. Mittaustulokset Volley 04 ja 05 -kokeista, jotka on videoitu ja voitu ajaa tasapainotilaan saakka, antoivat simulaatioiden kanssa hyvin samankaltaisia lämpötilojen arvoja. Keskeytettyjen kokeiden ekstrapolointi tasapainotilaan ei onnistunut kovin hyvin. Kokeet jouduttiin keskeyttämään niin paljon ennen termohydraulista tasapainoa, ettei tasapainotilan reunaehtoja voitu ennustaa. Videonauhoituksen puuttuessa ei veden pinnan korkeudesta saatu lisätietoa. Tuloksista voidaan lähinnä esittää arvioita siitä, mitä suuruusluokkaa mittapisteiden lämpötilat tulevat olemaan. Nämä lämpötilat ovat kuitenkin selvästi alle sydänsiepparissa käytettävän valuraudan sulamislämpötilan. Joten simulaatioiden perusteella voidaan sanoa, etteivät jäähdytyskanavien rakenteet sula, mikäli niissä on pienikin jäähdytevirtaus, eikä useampia kuin muutama vierekkäinen kanava ole täysin kuivana.
Resumo:
The competitiveness comparison is carried out for merely electricity producing alternatives. In Finland, further construction of CHP (combined heat and power) power plants will continue and cover part of the future power supply deficit, but also new condensing power plant capacity will be needed. The following types of power plants are studied: - nuclear power plant, - coal-fired condensing power plant - combined cycle gas turbine plant, - peat-fired condensing power plant. - wood-fired condensing power plant - wind power plant The calculations have been made using the annuity method with a real interest rate of 5 % perannum and with a fixed price level as of March 2003. With the annual full load utilization time of 8000 hours the nuclear electricity would cost 23,7 ¤/MWh, the gas based electricity 32,3 ¤/MWh and coal based electricity 28,1 ¤/MWh. If the influence of emission trading is taken into account,the advantage of the nuclear power will still be improved. Inorder to study the impact of changes in the input data, a sensitivity analysis has been carried out. It reveals that the advantage of the nuclear power is quite clear. E.g. the nuclear electricity is rather insensitive tothe changes of the uranium price, whereas for natural gas alternative the rising trend of gas price causes the greatest risk.
Resumo:
Diplomityön ensisijaisena tavoitteena on kuvata Loviisan ydinvoimalaitoksen hankeprosessi ja kartoittaa siihen liittyvät kehitystarpeet. Erityistä huomiota kiinnitetään arviointi-, suunnittelu- ja hyväksymisvaiheisiin sekä budjetointiin. Työssä käsitellään myös hankkeiden taloudellisten perusteluiden määrittelyä ja hankevaihtoehtojen vertailua sekä esitellään laitoksen budjetointikäytännöt ja etsitään menetelmiä laitoksen kustannusseurannan tehostamiseksi. Oman osuutensa työssä muodostaa uuden Maximo-tietojärjestelmän raportointitarpeiden ideointi. Samassa on esitelty myös uusi projektien hallintajärjestelmä Primavera. Tietojärjestelmäuudistuksen aikataulun myöhästymisen vuoksi järjestelmien kehittely ja ominaisuuksien määrittely on toteutettu suppeasti. Teoriaosuudessa käsitellään ydinvoimalaitoksen käyttöiän hallintaa, jonka tarkoituksena on pohjustaa empiirisessä osuudessa käsiteltävää hankeprosessia ja sen kehitystarpeita. Työn ensisijaisena lähdemateriaalina toimivat hankeprosessiin osallistuvien henkilöiden haastattelut. Työssä esitellään erilaisia päätöksentekoa tukevia ja kannattavuuden arviointiin käytettäviä työkaluja ja menetelmiä. Työssä on myös ideoitu alustavasti hankeprosessin tunnusluvut ja raportointitarpeet, jotka tulisi vaivatta saada poimittua Maximo-järjestelmästä. Työssä kuvattiin prosessikaaviona voimalaitoksen hankeprosessi ja tunnistettiin sen pahimmat pullonkaulat, joiden poistamiseksi esitettiin myös muutamia toimintaehdotuksia. Väärinymmärrysten vähentämiseksi selvennettiin laitoksella toteutettavien töiden käsitteistöä. Työssä esitettyjen kehitystoimenpiteiden avulla saadaan kustannusseurantaa tehostettua sekä investointien budjetointiin lisää ryhtiä. Työ päättyy työn tulosten esittelyyn ja johtopäätöksiin.
Resumo:
Tässä diplomityössä on tutkittu lämpötilakerrostumien syntymistä RENATA-koelaitteistolla, joka muistutti geometrialtaan painevesireaktorin paineastian ylätilaa. Kokeet tehtiin siten, että aluksi RENATA täytettiin lämpimällä vedellä, jonka jälkeen koelaitteistoon juoksutettiin pohjasta käsin kylmää vettä. Kokeiden tuloksia verrattiin kirjallisuudessa esitettyyn korrelaatioon. Koetilanne mallinnettiin myös Fluent-virtauslaskentaohjelmalla, jolloin saatiin tietoa ohjelman kyvystä käsitellä lämpötilakerrostumia. Kokeiden tuloksissa havaittiin olevan selvää yhteyttä korrelaatioon. Korrelaation kriittistä rajaa suuremmilla arvoilla kylmä vesi kerrostui lämpimän veden alapuolelle. Lämpimän ja kylmän veden väliin muodostui muutaman senttimetrin paksuinen rajakerros, lämpötilakerrostuma, jossa lämpötilan muutos oli suurimmillaan parinkymmenen asteen luokkaa. Tämä lämpötilakerrostuma nousi hitaasti ylöspäin kokeen edetessä. Vastaavasti korrelaation kriittistä rajaa pienemmillä arvoilla lämmin ja kylmä vesi sekoittuivat keskenään. Myös Fluentilla lasketuissa simuloinneissa kylmä vesi kerrostui lämpimän veden alapuolelle. Lämpötilakerrostuma ei kuitenkaan noussut ylöspäin niin kuin kokeessa tapahtui, vaan se seisahtui koelaitteiston yläosaan.
Resumo:
Työssä selvitettiin Olkiluodon ydinvoimalaitoksen prosessiseurannassa nykyisin käytössä olevia järjestelmiä sekä tutkittiin prosessisimulointiohjelman käyttömahdollisuuksia osana prosessiseurantaa. Ensisijaisesti tutkittiin kuinka hyvin simulointimalli soveltuu pienien tehopoikkeamien havainnoimiseen. Simulointimalli rakennettiin Endat Oy:n kehittämällä Prosim-simulointiohjelmalla. Simulointimalli on tehty kahdelle eri prosessille. Erilliset mallit rakennettiin sekä vuoden 2003 vuosihuoltoa edeltäneelle prosessille, että vuosihuollossa lauhteen esilämmityksen osalta muutetulle prosessille. Simulointimallien toimintaa käytännössä testattiin suorittamalla simulointiajoja muutamilla prosessin muutostilanteilla ja vertailemalla muutostilanteiden mittapistedataa simulointiohjelman laskemiin tuloksiin. Simulointimallin suurimmat poikkeamat mittapistedataan verrattuna todettiin turbiinilaitoksen korkeapainepuolella sekä lauhduttimessa. Käytännössä havaittiin, että nämä poikkeamat hankaloittavat simulointiohjelman käyttöä käytönvalvonnan työkaluna, eikä sen käytöstä näin ollen saada varsinaista lisäarvoa.
Resumo:
Tässä työssä tarkastellaan syöttövesisäiliöiden käyttäytymistä Loviisan voimalaitoksella. Työssä käydään läpi laitoksen kaikki pääjärjestelmät primääri- ja sekundääripuolelta. Lisäksi selvitetään myös säiliöiden käyttäytymiseen liittyvät apujärjestelmät niiltä osin kuin tarpeellista. Työn pääpaino laitosesittelyn jälkeen siirtyy täysin syöttövesisäiliömallin luomiseen ja simulointeihin. Työssä on tutkittu useita esille tulleita ideoita syöttövesisäiliöiden pinnanheilahdusten minimoimiseksi. Säiliömallin luominen ja simuloinnit on suoritettu APROS-voimalaitossimulaattorilla. Työssä on alustavasti tarkasteltu kaikki pinnanheilahdusten hallintaideat. Mahdolliset jatkotutkimukset ja parannustyöt aloitetaan tämän työn pohjalta. Työn aikana saatiin paljon uutta tietoa syöttövesisäiliöiden käyttäytymisestä. Tätä tietoa pystytään hyödyntämään käytössä, prosessisuunnittelussa ja koulutussimulaattoria päivitettäessä.
Resumo:
Tässä työssä on kuvattu ydinvoimalaitosten käyttökokemusten tutkimusta keskittyen erityisesti inhimillisten toimintojen tarkasteluun. Työssä on kerrottu kansainvälisistä vaatimuksista ja järjestöistä sekä yleisesti käyttökokemusten tutkimuksessa käytössä olevista menetelmistä keskittyen perussyyanalyysimenetelmiin. Suomen osalta työssä on käsitelty lainsäädännön asettamia velvoitteita ja muita vaatimuksia, jotka ydinvoima-alalla koostuvat lähinnä Säteilyturvakeskuksen YVL-ohjeista. Viranomaisena toimivan Säteilyturvakeskuksen, alan tutkimusta suorittavan Valtion teknillisen tutkimuskeskuksen ja Teollisuuden Voima Oy:n käyttökokemusten tutkimiseen liittyvät organisaatiot ja menettelytavat on esitelty. Fortum Power and Heat Oy:n omistaman ja käyttämän Loviisan ydinvoimalaitoksen käyttökokemusten hyödyntäminen on käsitelty tarkemmin. Loviisan voimalaitoksen organisaatio ja käyttökokemusten sekä inhimillisten virheiden käsittelymenetelmiä on esitelty ja analysoitu. Työn alkuvaiheessa Loviisan voimalaitoksella inhimillisistä virheistä kerätystä tiedosta koottu tietokanta järjesteltiin kuntoon. Järjestelyn jälkeen tietoa analysoitiin ja analysoinnin tulokset on esitetty tässä työssä. Sekä järjestelyn että analysoinnin aikana havaitut kehityskohteet kirjattiin muistiin. Pienet toimenpiteet suoritettiin heti ja suuremmat kirjattiin tämän työn toimenpide-ehdotuksiin. Kehittämiskeinoja on ehdotettu virheiden luokittelumenetelmään ja käyttökokemusten käsittelymenetelmiin.
Resumo:
Tämä diplomityö käsittelee perussyyanalyysien käyttöä Loviisan voimalaitoksella tapahtumien tutkinnassa. Diplomityössä käydään läpi erilaisia maailmalla käytössä olevia perussyyanalyysimenetelmiä. Nykyään Loviisan voimalaitoksella ei ole ohjeessa määritelty miten perussyyanalyysit tulee tehdä, joten diplomityön tulosten perusteella on tarkoitus valita Loviisan voimalaitokselle sopiva menetelmä. Diplomityössä tehdään eräs perussyyanalyysi kahdella eri menetelmällä, jotka tuntuivat sopivilta menetelmiltä Loviisan voimalaitoksille. Perussyyanalyysimenetelmät, joita käytetään, ovat Loviisassa käytetty sovellettu HPES-menetelmä ja yhdysvaltalaisten ydinvoimaviranomaisten kehittämä HPIP-menetelmä. Perussyyanalyysien valmistuttua ja tuloksia vertaillessa tultiin siihen lopputulokseen, ettei Loviisan voimalaitoksella ole tarvetta vaihtaa nykyisin käytössä olevaa mutta ohjeistamatonta menetelmää. Loviisan voimalaitokselle tehtävään uuteen perussyyanalyysiohjeeseen liitetään menetelmäkuvaus sovelletusta HPES-menetelmästä. Menetelmäkuvauksessa kuvataan miten HPES-menetelmää käytetään perussyyanalyysien tekoon Loviisan voimalaitoksella.
Resumo:
Turvallisuussuunnittelu muodostaa merkittävän osan ydinvoimalaitoksen suunnit-telutyöstä. Uusissa laitoskonsepteissa turvallisuutta on pyritty parantamaan lisää-mällä perinteisten aktiivisten hätäjärjestelmien rinnalle passiivisia eli toiminnal-taan puhtaasti luonnonlakeihin perustuvia hätäjärjestelmiä. Sähköteholtaan 640 MW oleva VVER-640 -laitostyyppi edustaa tässä suhteessa viimeisintä kehi-tysaskelta venäläisten VVER kevytvesireaktorien sarjassa. Suunnittelun lähtökoh-tana on ollut turvallisuuden parantaminen verrattuna aikaisempiin VVER-malleihin. Tähän on pyritty hätäjärjestelmien passiivisella toteutuksella. Passiivis-ten järjestelmien mitoitusperusteena on ollut laitoksen selviäminen itsenäisesti 24 tunnin ajan mahdollisissa onnettomuustilanteissa ilman suojarakennuksen tiiviy-den menetystä. Relap5-ohjelmalla tehtyjen simulointien perusteella laitoksen pas-siiviset järjestelmät näyttäisivät pystyvän huolehtimaan laitoksen turvallisuudesta sekä jäähdytteen- että sähkönmenetysonnettomuuksissa ilman aktiivisten järjes-telmien apua vaaditut 24 tuntia.
Resumo:
Uusissa ydinvoimalaitostyypeissä aiotaan käyttää aiempaa enemmän passiivisia turvallisuusjärjestelmiä. Näistä järjestelmistä on vielä vähän käyttökokemusta aktiivisiin turvallisuusjärjestelmiin verrattuna. Työssä tarkastellaan passiivisten turvallisuusjärjestelmien toimintaa sekä etsitään niiden mahdollisia luontaisia vikatilanteita. Luontaisten vikatilanteiden seurauksia järjestelmän suorituskykyyn arvioitiin yksinkertaisilla laskuilla ja mallintamalla RELAP5/MOD3.2.2 beta -termohydrauliikkaohjelmalla. Tarkastelu rajattiin kahden erityyppisen ydinvoimalaitoksen passiivisiin turvallisuusjärjestelmiin. Turvallisuusjärjestelmien suuntaa antavat mitat ja käyttötilanteiden parametrit saatiin laitosvalmistajien laitoskuvauksista. Osoittautui, että vikatilanteissa passiivisissa turvallisuusjärjestelmissä geometrialla on merkittävä vaikutus järjestelmän kapasiteettiin. Tarkasteluissa saatiin myös selville, että laitosmittakaavassa painovoimaisen hätälisävesijärjestelmän turvallisuustoiminto voi toteutua vaikka esiintyisi lyhytaikaisia toimintahäiriöitä, kuten lauhtumista hätälisävesisäiliössä. Sen sijaan lämmönsiirtopiirin virtausreittien tukkeutuminen voi olla fysikaalisesti merkittävä toimintaa haittaava tekijä.
Resumo:
Ydinvoimalaitoksen varalla olevien turvallisuusjärjestelmien tehtävänä on ehkäistä häiriö- ja onnettomuustilanteiden syntyminen sekä lieventää mahdollisen onnettomuuden seurauksia. Jotta saadaan tietoa näiden tärkeiden järjestelmien käyttökunnosta, on suoritettava riittäviä ja kattavia määräaikaistestauksia. Tutkimuksen pääkohteena ovat Olkiluodon voimalaitoksen matala- ja korkeapaineisten hätäjäähdytysjärjestelmien määräaikaistestaukset ja niiden ohjeet. Määräaikaistestauksista arvioidaan niiden kykyä havainnoida vikoja, mahdollisia vikaantumisia testauksissa, testausten taajuutta sekä vastaavuutta järjestelmien suunnitteluperusteena olevaan jäähdytteenmenetysonnettomuuteen (LOCA). Lisäksi selvitetään, mitä hyötyä testausten hajautuksilla ja diversifioinnilla on saavutettu, ja miten niitä tulisi jatkossa soveltaa. Testauksiin liittyviä ohjeita ja menettelyjä arvioidaan tarkastelemalla, täyttävätkö ne viranomaisen asettamat vaatimukset. Tulokseksi syntyi arvio järjestelmien testausten nykytilasta, joka on yleisesti ottaen hyvä. Tähän ovat vaikuttaneet testauksissa esiintyneiden puutteiden korjaaminen ja määräaikaistestausten määräajoin tapahtuvan arvioinnin kehittäminen. Vertailut LO-CA:an tuottivat tyydyttävän tuloksen, koska testausten todettiin olevan riittävän laajat ja vastaavan vuodessa kertyvien rasitusten osalta noin vuorokauden aikaista onnettomuutta lähes kaikilla laitteilla. Suositeltavaa olisi suorittaa pitkäaikaisempaa testausta apusyöttövesijärjestelmän pumpulle. Optimitestausvälin mukaisesti testausvälit ovat tällä hetkellä riittävän tiheät, ja muutamia testauksia pitäisi jopa harventaa. Hajautuksilla on saavutettu huomattava riskin väheneminen, ja nykyisin hajautusta sovelletaan hätäjäähdytysjärjestelmissä laajasti. Joistakin mittalaitteiden testauksista hajautus vielä puuttuu, joten näihin se olisi suositeltavaa lisätä. Järjestelmien testausten diversifiointi on nykyisellään riittävää.
Prosessihyötysuhteen parantamiskohteiden kartoitus painevesireaktorityyppisessä ydinvoimalaitoksessa
Resumo:
Työn tavoitteena on kartoittaa painevesireaktorityyppisen ydinvoimalaitoksen prosessihyötysuhteen parantamiskohteita. Aluksi kirjallisuudesta etsitään hyötysuhteen parantamiskeinoja ideaalisessa höyryvoimalaitosprosessissa. Näistä valitaan sopivimmat tarkastelun kohteeksi todellisessa voimalaitoksessa: syöttöveden esilämmityksen tehostaminen väliottohöyryvirtausta kasvattamalla ja syöttöveden esilämmittimen lämmönsiirtopintaa lisäämällä. Tarkastelussa pyritään löytämään paras mahdollinen hyötysuhde väliottohöyrylinjojen putkikokoa sekä esilämmittimien putkien lukumäärää muuttamalla. Diskreetin optimoinnin iteraatioaskel määritetään hyötysuhteen osittaisderivaattojen avulla. Tehtäviä muutoksia simuloidaan APROS-simulointiohjelmalla, jossa käytetään Loviisan voimalaitoksesta tehtyä mallia VVER-440. Työssä havaittiin, että pelkkiä väliottohöyrylinjojen putkikokoja – ja massavirtaa – kasvattamalla Loviisan voimalaitoksen hyötysuhdetta voidaan parantaa parhaimmillaan 32,75%:sta 32,85%:iin. Syöttöveden esilämmittimien lämmönsiirtopintaa lisäämällä saadaan suurempi parannus hyötysuhteeseen: 32,75%:sta 32,99%:iin. Näissä tapauksissa muutettiin kaikkia väliottohöyrylinjoja tai syöttöveden esilämmittimien lämpöpintoja. Työssä tarkasteltiin myös joitakin pienempiä muutoskohteita, joista paras hyötysuhteen kasvu saatiin korkeapaine-esilämmittimien lämmönsiirtopintaa kasvattamalla sekä toisen väliottohöyrylinjan (RD12) ja sitä vastaavan syöttöveden esilämmittimen muutosten yhteisvaikutuksena.
Resumo:
Tässä diplomityössä tehtiin käyttäjän opas kehittyneelle prosessisimulointiohjelmistolle APROS 5. Opas on osa VTT Energialle tehtävää APROS 5 käyttäjän koulutuspakettia, joka julkaistaan myöhemmin CD-ROM -muotoisena. Prosessisimulointiohjelmistoa AAPROS 5 voidaan käyttää termohydraulisten prosessien, automaatiopiirien ja sähköjärjestelmien mallinnuksessa. Ohjelma sisältää myös neutroniikkamallin ydinreaktorin käyttäytymisen mallintamiseksi. APROS:in aikaisemmilla UNIX-ympäristössä toimivilla versioilla on toteutettu useita ydinvoimalaitosten turvallisuustutkimukseen liittyviä analyysejä ja sekä ydinvoimalaitosten että konventionaalisten voimalaitosten koulutussimulaattoreita. APROS 5 toimii Windows NT -ympäristössä ja on oleellisesti erilainen käyttää kuin aikaisemmat versiot. Tämän myötä syntyi tarve uudelle käyttäjän oppaalle. Käyttäjän oppaassa esitetään APROS 5:n tärkeimmät toiminnot, mallinnuksen periaatteet ja termohydraulisten ja neutroniikan ratkaisumallit. Lisäksi oppaassa esitetään esimerkki, jossa mallinnetaan yksinkertaistettu VVER-440 -tyyppisen ydinvoimalaitoksen primääripiiri. Yksityiskohtaisempaa tietoa ohjelmistosta on saatavilla APROS 5 -dokumentaatiosta.