53 resultados para MAGNETIC PROPERTY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vision affords us with the ability to consciously see, and use this information in our behavior. While research has produced a detailed account of the function of the visual system, the neural processes that underlie conscious vision are still debated. One of the aims of the present thesis was to examine the time-course of the neuroelectrical processes that correlate with conscious vision. The second aim was to study the neural basis of unconscious vision, that is, situations where a stimulus that is not consciously perceived nevertheless influences behavior. According to current prevalent models of conscious vision, the activation of visual cortical areas is not, as such, sufficient for consciousness to emerge, although it might be sufficient for unconscious vision. Conscious vision is assumed to require reciprocal communication between cortical areas, but views differ substantially on the extent of this recurrent communication. Visual consciousness has been proposed to emerge from recurrent neural interactions within the visual system, while other models claim that more widespread cortical activation is needed for consciousness. Studies I-III compared models of conscious vision by studying event-related potentials (ERP). ERPs represent the brain’s average electrical response to stimulation. The results support the model that associates conscious vision with activity localized in the ventral visual cortex. The timing of this activity corresponds to an intermediate stage in visual processing. Earlier stages of visual processing may influence what becomes conscious, although these processes do not directly enable visual consciousness. Late processing stages, when more widespread cortical areas are activated, reflect the access to and manipulation of contents of consciousness. Studies IV and V concentrated on unconscious vision. By using transcranial magnetic stimulation (TMS) we show that when early visual cortical processing is disturbed so that subjects fail to consciously perceive visual stimuli, they may nevertheless guess (above chance-level) the location where the visual stimuli were presented. However, the results also suggest that in a similar situation, early visual cortex is necessary for both conscious and unconscious perception of chromatic information (i.e. color). Chromatic information that remains unconscious may influence behavioral responses when activity in visual cortex is not disturbed by TMS. Our results support the view that early stimulus-driven (feedforward) activation may be sufficient for unconscious processing. In conclusion, the results of this thesis support the view that conscious vision is enabled by a series of processing stages. The processes that most closely correlate with conscious vision take place in the ventral visual cortex ~200 ms after stimulus presentation, although preceding time-periods and contributions from other cortical areas such as the parietal cortex are also indispensable. Unconscious vision relies on intact early visual activation, although the location of visual stimulus may be unconsciously resolved even when activity in the early visual cortex is interfered with.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is a chronic immune-mediated inflammatory disorder of the central nervous system. MS is the most common disabling central nervous system (CNS) disease of young adults in the Western world. In Finland, the prevalence of MS ranges between 1/1000 and 2/1000 in different areas. Fabry disease (FD) is a rare hereditary metabolic disease due to mutation in a single gene coding α-galactosidase A (alpha-gal A) enzyme. It leads to multi-organ pathology, including cerebrovascular disease. Currently there are 44 patients with diagnosed FD in Finland. Magnetic resonance imaging (MRI) is commonly used in the diagnostics and follow-up of these diseases. The disease activity can be demonstrated by occurrence of new or Gadolinium (Gd)-enhancing lesions in routine studies. Diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) are advanced MR sequences which can reveal pathologies in brain regions which appear normal on conventional MR images in several CNS diseases. The main focus in this study was to reveal whether whole brain apparent diffusion coefficient (ADC) analysis can be used to demonstrate MS disease activity. MS patients were investigated before and after delivery and before and after initiation of diseasemodifying treatment (DMT). In FD, DTI was used to reveal possible microstructural alterations at early timepoints when excessive signs of cerebrovascular disease are not yet visible in conventional MR sequences. Our clinical and MRI findings at 1.5T indicated that post-partum activation of the disease is an early and common phenomenon amongst mothers with MS. MRI seems to be a more sensitive method for assessing MS disease activity than the recording of relapses. However, whole brain ADC histogram analysis is of limited value in the follow-up of inflammatory conditions in a pregnancy-related setting because the pregnancy-related physiological effects on ADC overwhelm the alterations in ADC associated with MS pathology in brain tissue areas which appear normal on conventional MRI sequences. DTI reveals signs of microstructural damage in brain white matter of FD patients before excessive white matter lesion load can be observed on conventional MR scans. DTI could offer a valuable tool for monitoring the possible effects of enzyme replacement therapy in FD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis studies intellectual property right (also: IPR) strategies from the perspective of high growth startup companies. Due to technology development and intellectualization of business, large part of companies’ assets are nowadays intangible. At the same time, the importance of protection instruments designed to protect these intangible assets, intellectual property rights, is increasing. Utilization of these instruments, however, requires understanding of the functioning of the IPR system, as well as financial resources. Startup companies aiming for growth need to be able compete with more established companies also in relation to intangible assets, but they might not have the required knowledge ot resources to fully utilize IPRs in their business. This research aims to understand what are the benefits a startup company can have from protecting their IPRs, and how can the company achieve those benefits. Based on a review of previous literature, altogether 11 benefits of IPR registration were recognized. To answer to the research questions, six half-structured interviews were conducted with experts form different fields, all with experience in working with startup companies and IPR issues. The interviews were analyzed using different methods of qualitative data analysis, mainly derived from grounded theory and case study methods. As a result, out of the 11 benefits recognized from earlier literature, 8 were recognized to be relevant for startup companies. The most central benefits were recognized to be linked with the financial lifecycle of the startup company, including increasing credibility of the startup and stimulating an investment. In addition it was noticed, that startup companies are mainly able to utilize these benefits at later stages of their lifecycle. However, to be able to utilize the benefits at later stages, the startup company needs to be aware of the functioning of the IPR system and might need to apply for appropriate protection already early on. As a result of this study, a three-step model was formed to describe different levels of IPR utilization. The first level of the model represents the minimum level of understanding that every startup company should have regarding IPRs. The second level views IPR strategy from a risk management perspective, including securing the minimum protection of the company’s own IPRs, contract management and establishing processes for handling IPR issues. The last stage reflects strategic use of IPRs. At this third stage intellectual property rights have a central role in the startup company’s business, and they are used in the company’s value creation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chaotic behaviour is one of the hardest problems that can happen in nonlinear dynamical systems with severe nonlinearities. It makes the system's responses unpredictable. It makes the system's responses to behave similar to noise. In some applications it should be avoided. One of the approaches to detect the chaotic behaviour is nding the Lyapunov exponent through examining the dynamical equation of the system. It needs a model of the system. The goal of this study is the diagnosis of chaotic behaviour by just exploring the data (signal) without using any dynamical model of the system. In this work two methods are tested on the time series data collected from AMB (Active Magnetic Bearing) system sensors. The rst method is used to nd the largest Lyapunov exponent by Rosenstein method. The second method is a 0-1 test for identifying chaotic behaviour. These two methods are used to detect if the data is chaotic. By using Rosenstein method it is needed to nd the minimum embedding dimension. To nd the minimum embedding dimension Cao method is used. Cao method does not give just the minimum embedding dimension, it also gives the order of the nonlinear dynamical equation of the system and also it shows how the system's signals are corrupted with noise. At the end of this research a test called runs test is introduced to show that the data is not excessively noisy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this thesis research was to gain a better understanding of the emplacement of rapakivi granite intrusions, as well as the emplacement of gold-bearing hydrothermal fluids in structurally controlled mineralizations. Based on investigations of the magnetic fabric, the internal structures could be analysed and the intrusion mechanisms for rapakivi granite intrusions and respectively different deformation stages within gold-bearing shear and fault zones identified. Aeromagnetic images revealed circular structures within the rapakivi granite batholiths of Wiborg, Vehmaa and Åland. These circular structures represent intrusions that eventually build up these large batholiths. The rapakivi granite intrusions of Vehmaa, Ruotsinpyhtää within the Wiborg batholith and Saltvik intrusions within the Åland batholith all show bimodal magnetic susceptibilities with paramagnetic and ferromagnetic components. The distribution of the bimodality is related to different magma batches of the studied intrusions. The anisotropy of magnetic susceptibility (AMS) reveals internal structures that cannot be studied macroscopically or by microscope. The Ruotsinpyhtää and Vehmaa intrusions represent similar intrusion geometries, with gently to moderately outward dipping magnetic foliations. In the case of Vehmaa, the magnetic lineations are gently plunging and trend in the directions of the slightly elongated intrusion. The magnetic lineations represent magma flow. The shapes of the AMS ellipsoids are also more planar (oblate) in the central part of the intrusion, whereas they become more linear (prolate) near the margin. These AMS results, together with field observations, indicate that the main intrusion mechanism has involved the subsidence of older blocks with successive intrusion of fractionated magma during repeated cauldron subsidence. The Saltvik area within the Åland batholith consists of a number of smaller elliptical intrusions of different rapakivi types forming a multiple intrusive complex. The magnetic fabric shows a general westward dipping of the pyterlite and eastward dipping of the contiguous even-grained rapakivi granite, which indicates a central inflow of magma batches towards the east and west resulting from a laccolitic emplacement of magma batches, while the main mechanism for space creation was derived from subsidence. The magnetic fabric of structurally controlled gold potential shear and fault zones in Jokisivu, Satulinmäki and Koijärvi was investigated in order to describe the internal structures and define the deformation history and emplacement of hydrothermal fluids. A further aim of the research was to combine AMS studies with palaeomagnetic methods to constrain the timing for the shearing event relative to the precipitation of ferromagnetic minerals and gold. All of the studied formations are dominated by monoclinic pyrrhotite. The AMS directions generally follow the tectonic structures within the formations. However, internal variations in the AMS direction as well as the shapes of the AMS ellipsoids are observed within the shear zones. In Jokisivu and Satulinmäki in particular, the magnetic signatures of the shear zone core differ from the margins. Furthermore, the shape of the magnetic fabric in the shear zone core of Jokisivu is dominated by oblate shapes, whereas the margins exhibit prolate shapes. These variations indicate a later effect of the hydrothermal fluids on the general shear event. The palaeo-magnetic results reveal a deflection from the original Svecofennian age geomagnetic direction. These results, coupled with correlations between the orientation of the NRM vectors and the magnetic and rock fabrics, imply that the gold-rich hydrothermal fluids were emplaced pre/syntectonically during the late stages of the Svecofennian orogeny.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanotubes are one of the most perspective materials in modern nanotechologies. It makes present investigation very actual. In this work magnetic properties of multi-walled nanotubes on polystyrene substrate are investigated by using quantum magnetometer SQUID. Main purpose was to obtain magnetic field and temperature dependences of magnetization and to compare them to existing theoretical models of magnetism in carbon-bases structures. During data analysis a mathematical algorithm for obtained data filtration was developed because measurement with quantum magnetometer assume big missives of number data, which contain accidental errors. Nature of errors is drift of SQUID signal, errors of different parts of measurement station. Nanotube samples on polystyrene substrate were studied with help of atomic force microscope. On the surface traces of nanotube were found contours, which were oriented in horizontal plane. This feature was caused by rolling method for samples. Detailed comparison of obtained dependences with information of other researches on this topic allows to obtain some conclusions about nature of magnetism in the samples. It emphasizes importance and actuality of this scientific work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tässä työssä on tutkittu modulaarisen aktiivimagneettilaakeroidun koelaitteen mekaanista suunnittelua ja analysointia. Suurnopeusroottorin suunnittelun teoria on esitelty. Lisäksi monia analyyttisiä mallinnusmenetelmiä mekaanisten kuormitusten mallintamiseksi on esitelty. Koska kyseessä on suurnopeussähkökone, roottoridynamiikka ja sen soveltuvuus suunnittelussa on esitelty. Magneettilaakerien rakenteeseen ja toimintaan on tutustuttu osana tätä työtä. Kirjallisuuskatsaus nykyisistä koelaitteista esimerkiksi komponenttien ominaisuuksien tunnistamiseen ja roottoridynamiikan tutkimuksiin on esitelty. Työn rajauksena on konseptisuunnittelu muunneltavalle magneettilaakeroidulle (AMB) koelaitteelle ja suunnitteluprosessin dokumentointi. Muunneltavuuteen päädyttiin, koska se mahdollistaa erilaisten komponenttiasetteluiden testaamisen erilaisille magneettilaakerikokoonpanoille ja roottoreille. Pääpaino tässä työssä on suurnopeus induktiokoneen roottorin suunnittelussa ja mallintamisessa. Modulaaristen toimilaitteiden kuten magneettilaakerien ja induktiosähkömoottorin rakenne on esitelty ja modulaarisen rakenteen käytettävyyden hyödyistä koelaitekäytössä on dokumentoitu. Analyyttisiä ja elementtimenetelmään perustuvia tutkimusmenetelmiä on käytetty tutkittaessa suunniteltua suurnopeusroottoria. Suunnittelun ja analysoinnin tulokset on esitelty ja verrattu keskenään eri mallinnusmenetelmien välillä. Lisäksi johtopäätökset sähkömagneettisten osien liittämisen monimutkaisuudesta ja vaatimuksista roottoriin ja toimilaitteisiin sekä mekaanisten että sähkömagneettisten ominaisuuksien optimoimiseksi on dokumentoitu.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High magnetic fields and extremely low temperatures are essential in the study of new semiconductor materials for example in the field of spintronics. Typical phenomenons that arise in such conditions are: Hall Effect, Anomalous Hall effect and Shubnikov de-Haas effect. In this thesis a device capable for such conditions was described. A strong magnetic field pulse generator situated in the laboratory of physics and the Lappeenranta University of Technology was studied. The device is introduced in three parts. First one is the pulsed field magnetic generator, which is responsible for generating the high magnetic field. Next one is the measurement systems, which are responsible for monitoring the sample and the system itself. The last part describes the cryostat system, which allows the extremely cold temperatures in the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Active Magnetic Bearings offer many advantages that have brought new applications to the industry. However, similarly to all new technology, active magnetic bearings also have downsides and one of those is the low standardization level. This thesis is studying mainly the ISO 14839 standard and more specifically the system verification methods. These verifying methods are conducted using a practical test with an existing active magnetic bearing system. The system is simulated with Matlab using rotor-bearing dynamics toolbox, but this study does not include the exact simulation code or a direct algebra calculation. However, this study provides the proof that standardized simulation methods can be applied in practical problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Systemic iron overload (IO) is considered a principal determinant in the clinical outcome of different forms of IO and in allogeneic hematopoietic stem cell transplantation (alloSCT). However, indirect markers for iron do not provide exact quantification of iron burden, and the evidence of iron-induced adverse effects in hematological diseases has not been established. Hepatic iron concentration (HIC) has been found to represent systemic IO, which can be quantified safely with magnetic resonance imaging (MRI), based on enhanced transverse relaxation. The iron measurement methods by MRI are evolving. The aims of this study were to implement and optimise the methodology of non-invasive iron measurement with MRI to assess the degree and the role of IO in the patients. An MRI-based HIC method (M-HIC) and a transverse relaxation rate (R2*) from M-HIC images were validated. Thereafter, a transverse relaxation rate (R2) from spin-echo imaging was calibrated for IO assessment. Two analysis methods, visual grading and rSI, for a rapid IO grading from in-phase and out-of-phase images were introduced. Additionally, clinical iron indicators were evaluated. The degree of hepatic and cardiac iron in our study patients and IO as a prognostic factor in patients undergoing alloSCT were explored. In vivo and in vitro validations indicated that M-HIC and R2* are both accurate in the quantification of liver iron. R2 was a reliable method for HIC quantification and covered a wider HIC range than M-HIC and R2*. The grading of IO was able to be performed rapidly with the visual grading and rSI methods. Transfusion load was more accurate than plasma ferritin in predicting transfusional IO. In patients with hematological disorders, the prevalence of hepatic IO was frequent, opposite to cardiac IO. Patients with myelodysplastic syndrome were found to be the most susceptible to IO. Pre-transplant IO predicted severe infections during the early post-transplant period, in contrast to the reduced risk of graft-versus-host disease. Iron-induced, poor transplantation results are most likely to be mediated by severe infections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is devoted to the study of the hyperfine properties in iron-based superconductors and the synthesis of these compounds and related phases. During this work polycrystalline chalcogenide samples with stoichiometry 1:1 (FeTe1-χSχ, FeSe1-x) and pnictide samples with stoichiometry 1:2:2 (BaFe2(As1-χPχ)2, EuFe2(As1-x Px)2) were synthesized by solid-state reaction methods in vacuum and in a protecting Ar atmosphere. In several cases post-annealing in oxygen atmosphere was employed. The purity and superconducting properties of the obtained samples were checked with X-ray diffraction, SQUID and resistivity measurements. For studies of the magnetic properties of the investigated samples Mössbauer spectroscopy was used. Using low-temperature measurements around Tc and various values of the source velocity the hyperfine interactions were obtained and the magnetic and structural properties in the normal and superconducting states could be studied. Mössbauer measurements together with XRD characterization were also used for the detection of impurity phases. DFT calculations were used for the theoretical study of Mössbauer parameters for pnictide-based ᴻsamples BaFe2(As1-xPx)2 and EuFe2(As1-xPx)2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work emission, optical, electrical and magnetic properties of the d- and f- elements doped zinc selenide crystals were investigated within a wide temperature range. Doping was performed in various technological processes: during the growth by chemical vapor transport method; by thermal diffusion from the Bi or Zn melt. Concentration of the doping impurity in the crystals was controlled by amount of the dopant in the source material or by its concentration in the doping media. Special interest in the work was paid to the influence of the different concentrations of Cr and Yb impurities on ZnSe crystals’ properties, correlations between observed effects and similarities with the Ni, Mn and Gd dopants are analysed. Possibility of formation of the excitons bound to the doping d-ions was shown. In contrast to this, it was observed that f-elements do not bound excitons, but prevent formation of excitons bound to some uncontrolled impurities. A mechanism of Cr doping impurity interaction with background impurities and zinc selenide structural defects was proposed based on experimental data. An assumption about resonant energy transfer between double charged chromium ions and complexes based on crystals’ vacancy defects was made. A correlation between emission and magnetic properties of the d- ions doped samples was established. Based on this correlation a mechanism explaining the concentration quench of the emission was proposed. It was found that f-ions bind electrically active shallow and deep donor and acceptor states of background impurity to electrically neutral complexes. This may be observed as “purification” of ZnSe crystals by doping with the rare-earth elements, resulting i tendency of the properties of f-ion doped crystals to the properties of intrinsic crystals, but with smaller concentration of uncontrolled native and impurity defects. A possible interpretation of this effect was proposed. It was shown that selenium substituting impurities decrease efficiency of the Yb doping. Based on this experimental results an attempt to determine ytterbium ion surroundings in the crystal lattice was made. It was shown that co-doping of zinc selenide crystals with the d- and f- ions leads to the combination of the impurities influence on the material’s properties. On the basis of obtained data an interaction mechanism of the d- and f-elements co-dopants was proposed. Guided by the model of the ytterbium ion incorporation in the selenide sublattice of the ZnSe crystals, an assumption about stabilization of single charged chromium ions in the zinc sublattice crystal nodes, by means of formation of the local charge compensating clusters, was made.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, the influence of the functionalization of graphene and graphite on their magnetic properties was investigated. The functionalization was performed by covalent attaching of a phenyl groups with three different radicals (4-bromoaniline, 4-chloroaniline and 4-nitroaniline). Magnetic properties were measured by SQUID magnetometer. Both pristine graphite and graphene showed strong diamagnetic behavior. For good quality graphite, diamagnetism was found to be temperature-dependent. All samples demonstrated noticeable paramagnetic contribution below 50 K. According to fitting experimental results with Brillouin function and Curie law, it was shown that paramagnetism is provided by small clusters of spins (superparamagnetic behavior). Moreover, the clusters size and spin concentrations were calculated. For the samples functionalized with nitroaniline the antiferromagnetic transition around 120 K was observed. To explain this behavior, a simple model was proposed. Additional analysis of the graphene quality, structure and composition of the samples was carried out by HRTEM, EDS mapping, Raman spectroscopy and X-ray diffraction techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditional methods for studying the magnetic shape memory (MSM) alloys Ni-Mn-Ga include subjecting the entire sample to a uniform magnetic field or completely actuating the sample mechanically. These methods have produced significant results in characterizing the MSM effect, the properties of Ni-Mn-Ga and have pioneered the development of applications from this material. Twin boundaries and their configuration within a Ni-Mn-Ga sample are a key component in the magnetic shape memory effect. Applications that are developed require an understanding of twin boundary characteristics and, more importantly, the ability to predictably control them. Twins have such a critical role that the twinning stress of a Ni-Mn-Ga crystal is the defining characteristic that indicates its quality and significant research has been conducted to minimize this property. This dissertation reports a decrease in the twinning stress, predictably controlling the twin configuration and characterizing the dynamics of twin boundaries. A reduction of the twinning stress is demonstrated by the discovery of Type II twins within Ni-Mn-Ga which have as little as 10% of the twinning stress of traditional Type I twins. Furthermore, new methods of actuating a Ni-Mn-Ga element using localized unidirectional or bidirectional magnetic fields were developed that can predictably control the twin configuration in a localized area of a Ni-Mn-Ga element. This method of controlling the local twin configuration was used in the characterization of twin boundary dynamics. Using a localized magnetic pulse, the velocity and acceleration of a single twin boundary were measured to be 82.5 m/s and 2.9 × 107 m/s2, and the time needed for the twin boundary to nucleate and begin moving was less than 2.8 μs. Using a bidirectional magnetic field from a diametrically magnetized cylindrical magnet, a highly reproducible and controllable local twin configuration was created in a Ni-Mn-Ga element which is the fundamental pumping mechanism in the MSM micropump that has been co-invented and extensively characterized by the author.