59 resultados para MACHINE DESIGN
Resumo:
The last decade has shown that the global paper industry needs new processes and products in order to reassert its position in the industry. As the paper markets in Western Europe and North America have stabilized, the competition has tightened. Along with the development of more cost-effective processes and products, new process design methods are also required to break the old molds and create new ideas. This thesis discusses the development of a process design methodology based on simulation and optimization methods. A bi-level optimization problem and a solution procedure for it are formulated and illustrated. Computational models and simulation are used to illustrate the phenomena inside a real process and mathematical optimization is exploited to find out the best process structures and control principles for the process. Dynamic process models are used inside the bi-level optimization problem, which is assumed to be dynamic and multiobjective due to the nature of papermaking processes. The numerical experiments show that the bi-level optimization approach is useful for different kinds of problems related to process design and optimization. Here, the design methodology is applied to a constrained process area of a papermaking line. However, the same methodology is applicable to all types of industrial processes, e.g., the design of biorefiners, because the methodology is totally generalized and can be easily modified.
Resumo:
Measurement is a tool for researching. Therefore, it is important that the measuring process is carried out correctly, without distorting the signal or the measured event. Researches of thermoelectric phenomena have been focused more on transverse thermoelectric phenomena during recent decades. Transverse Seebeck effect enables to produce thinner and faster heat flux sensor than before. Studies about transverse Seebeck effect have so far focused on materials, so in this Master’s Thesis instrumentation of transverse Seebeck effect based heat flux sensor is studied, This Master’s Thesis examines an equivalent circuit of transverse Seebeck effect heat flux sensors, their connectivity to electronics and choosing and design a right type amplifier. The research is carried out with a case study which is Gradient Heat Flux Sensors and an electrical motor. In this work, a general equivalent circuit was presented for the transverse Seebeck effect-based heat flux sensor. An amplifier was designed for the sensor of the case study, and the solution was produced for the measurement of the local heat flux of the electric motor to improve the electromagnetic compatibility.
Resumo:
A direct-driven permanent magnet synchronous machine for a small urban use electric vehicle is presented. The measured performance of the machine at the test bench as well as the performance over the modified New European Drive Cycle will be given. The effect of optimal current components, maximizing the efficiency and taking into account the iron loss, is compared with the simple id=0 – control. The machine currents and losses during the drive cycle are calculated and compared with each other.
Resumo:
The review of intelligent machines shows that the demand for new ways of helping people in perception of the real world is becoming higher and higher every year. This thesis provides information about design and implementation of machine vision for mobile assembly robot. The work has been done as a part of LUT project in Laboratory of Intelligent Machines. The aim of this work is to create a working vision system. The qualitative and quantitative research were done to complete this task. In the first part, the author presents the theoretical background of such things as digital camera work principles, wireless transmission basics, creation of live stream, methods used for pattern recognition. Formulas, dependencies and previous research related to the topic are shown. In the second part, the equipment used for the project is described. There is information about the brands, models, capabilities and also requirements needed for implementation. Although, the author gives a description of LabVIEW software, its add-ons and OpenCV which are used in the project. Furthermore, one can find results in further section of considered thesis. They mainly represented by screenshots from cameras, working station and photos of the system. The key result of this thesis is vision system created for the needs of mobile assembly robot. Therefore, it is possible to see graphically what was done on examples. Future research in this field includes optimization of the pattern recognition algorithm. This will give less response time for recognizing objects. Presented by author system can be used also for further activities which include artificial intelligence usage.
Resumo:
The rotational speed of high-speed electric machines is over 15 000 rpm. These machines are compact in size when compared to the power rate. As a consequence, the heat fluxes are at a high level and the adequacy of cooling becomes an important design criterion. In the high-speed machines, the air gap between the stator and rotor is a narrow flow channel. The cooling air is produced with a fan and the flow is then directed to the air gap. The flow in the gap does not provide sufficient cooling for the stator end windings, and therefore additional cooling is required. This study investigates the heat transfer and flow fields around the coil end windings when cooling jets are used. As a result, an innovative and new assembly is introduced for the cooling jets, with the benefits of a reduced amount of hot spots, a lower pressure drop, and hence a lower power need for the cooling fan. The gained information can also be applied to improve the cooling of electric machines through geometry modifications. The objective of the research is to determine the locations of the hot spots and to find out induced pressure losses with different jet alternatives. Several possibilities to arrange the extra cooling are considered. In the suggested approach cooling is provided by using a row of air jets. The air jets have three main tasks: to cool the coils effectively by direct impingement jets, to increase and cool down the flow that enters the coil end space through the air gap, and to ensure the correct distribution of the flow by forming an air curtain with additional jets. One important aim of this study is the arrangement of cooling jets in such manner that hot spots can be avoided to wide extent. This enables higher power density in high-speed motors. This cooling system can also be applied to the ordinary electric machines when efficient cooling is needed. The numerical calculations have been performed using a commercial Computational Fluid Dynamics software. Two geometries have been generated: cylindrical for the studied machine and Cartesian for the experimental model. The main parameters include the positions, arrangements and number of jets, the jet diameters, and the jet velocities. The investigated cases have been tested with two widely used turbulence models and using a computational grid of over 500 000 cells. The experimental tests have been made by using a simplified model for the end winding space with cooling jets. In the experiments, an emphasis has been given to flow visualisation. The computational analysis shows good agreement with the experimental results. Modelling of the cooling jet arrangement enables also a better understanding of the complex system of heat transfer at end winding space.
Resumo:
Työn tarkoituksena oli suunnitella kunnonvalvontajärjestelmä kahdelle lasivillan tuotantolinjalle. Suunnitteluprosessin lisäksi työssä on esitelty erilaisia kunnonvalvontamenetelmiä. Työn alussa on kerrottu erilaisista kunnonvalvontamenetelmistä, joilla voidaan seurata erilaisten laitteiden ja koneiden toimintakuntoa.Erityisesti työssä on tarkasteltu teollisuudessa yleistyviä kunnonvalvonnan värähtelymittauksia. Työssä suunniteltu kunnonvalvontajärjestelmä perustuu viiteen eri menetelmään, jotka ovat värähtelymittaus, lämpötilanmittaus lämpökameralla, lämpötilanmittaus kannettavalla mittarilla, kuuntelu elektronisella stetoskoopilla ja pyörivien osien kunnontarkkailu stroboskoopilla. Kunnonvalvontajärjestelmän suunnittelu on tehty useassa eri vaiheessa. Ensin työssä on kartoitettu tuotannon kannalta tärkeimmät laitteet ja niiden mahdolliset vikaantumistavat. Seuraavaksi on valittu sopivat kunnonvalvontamenetelmät ja tehty mittaussuunnitelma, jossa on esitetty eri laitteille suoritettavat mittaukset ja mittausten aikavälit.Lopuksi työssä on esitelty muutama esimerkkitapaus kunnonvalvontamenetelmien käytöstä sekä kerrottu mahdollisista tulevaisuuden kehitysmahdollisuuksista.
Resumo:
The solid-rotor induction motor provides a mechanically and thermally reliable solution for demanding environments where other rotor solutions are prohibited or questionable. Solid rotors, which are manufactured of single pieces of ferromagnetic material, are commonly used in motors in which the rotationspeeds exceed substantially the conventional speeds of laminated rotors with squirrel-cage. During the operation of a solid-rotor electrical machine, the rotor core forms a conductor for both the magnetic flux and the electrical current. This causes an increase in the rotor resistance and rotor leakage inductance, which essentially decreases the power factor and the efficiency of the machine. The electromagnetic problems related to the solid-rotor induction motor are mostly associated with the low performance of the rotor. Therefore, the main emphasis in this thesis is put on the solid steel rotor designs. The rotor designs studied in thisthesis are based on the fact that the rotor construction should be extremely robust and reliable to withstand the high mechanical stresses caused by the rotational velocity of the rotor. In addition, the demanding operation environment sets requirements for the applied materials because of the high temperatures and oxidizing acids, which may be present in the cooling fluid. Therefore, the solid rotors analyzed in this thesis are made of a single piece of ferromagnetic material without any additional parts, such as copper end-rings or a squirrel-cage. A pure solid rotor construction is rigid and able to keep its balance over a large speed range. It also may tolerate other environmental stresses such as corroding substances or abrasive particles. In this thesis, the main target is to improve the performance of an induction motor equipped with a solid steel rotor by traditional methods: by axial slitting of the rotor, by selecting a proper rotor core material and by coating the rotor with a high-resistive stainless ferromagnetic material. In the solid steel rotor calculation, the rotor end-effects have a significant effect on the rotor characteristics. Thus, the emphasis is also put on the comparison of different rotor endfactors. In addition, a corrective slip-dependent end-factor is proposed. The rotor designs covered in this thesis are the smooth solid rotor, the axially slitted solid rotor and the slitted rotor having a uniform ferromagnetic coating cylinder. The thesis aims at design rules for multi-megawatt machines. Typically, mega-watt-size solidrotor machines find their applications mainly in the field of electric-motor-gas-compression systems, in steam-turbine applications, and in various types of largepower pump applications, where high operational speeds are required. In this thesis, a 120 kW, 10 000 rpm solid-rotor induction motor is usedas a small-scale model for such megawatt-range solid-rotor machines. The performance of the 120 kW solid-rotor induction motors is determined by experimental measurements and finite element calculations.
Resumo:
Tehoelektoniikkalaitteella tarkoitetaan ohjaus- ja säätöjärjestelmää, jolla sähköä muokataan saatavilla olevasta muodosta haluttuun uuteen muotoon ja samalla hallitaan sähköisen tehon virtausta lähteestä käyttökohteeseen. Tämä siis eroaa signaalielektroniikasta, jossa sähköllä tyypillisesti siirretään tietoa hyödyntäen eri tiloja. Tehoelektroniikkalaitteita vertailtaessa katsotaan yleensä niiden luotettavuutta, kokoa, tehokkuutta, säätötarkkuutta ja tietysti hintaa. Tyypillisiä tehoelektroniikkalaitteita ovat taajuudenmuuttajat, UPS (Uninterruptible Power Supply) -laitteet, hitsauskoneet, induktiokuumentimet sekä erilaiset teholähteet. Perinteisesti näiden laitteiden ohjaus toteutetaan käyttäen mikroprosessoreja, ASIC- (Application Specific Integrated Circuit) tai IC (Intergrated Circuit) -piirejä sekä analogisia säätimiä. Tässä tutkimuksessa on analysoitu FPGA (Field Programmable Gate Array) -piirien soveltuvuutta tehoelektroniikan ohjaukseen. FPGA-piirien rakenne muodostuu erilaisista loogisista elementeistä ja niiden välisistä yhdysjohdoista.Loogiset elementit ovat porttipiirejä ja kiikkuja. Yhdysjohdot ja loogiset elementit ovat piirissä kiinteitä eikä koostumusta tai lukumäärää voi jälkikäteen muuttaa. Ohjelmoitavuus syntyy elementtien välisistä liitännöistä. Piirissä on lukuisia, jopa miljoonia kytkimiä, joiden asento voidaan asettaa. Siten piirin peruselementeistä voidaan muodostaa lukematon määrä erilaisia toiminnallisia kokonaisuuksia. FPGA-piirejä on pitkään käytetty kommunikointialan tuotteissa ja siksi niiden kehitys on viime vuosina ollut nopeaa. Samalla hinnat ovat pudonneet. Tästä johtuen FPGA-piiristä on tullut kiinnostava vaihtoehto myös tehoelektroniikkalaitteiden ohjaukseen. Väitöstyössä FPGA-piirien käytön soveltuvuutta on tutkittu käyttäen kahta vaativaa ja erilaista käytännön tehoelektroniikkalaitetta: taajuudenmuuttajaa ja hitsauskonetta. Molempiin testikohteisiin rakennettiin alan suomalaisten teollisuusyritysten kanssa soveltuvat prototyypit,joiden ohjauselektroniikka muutettiin FPGA-pohjaiseksi. Lisäksi kehitettiin tätä uutta tekniikkaa hyödyntävät uudentyyppiset ohjausmenetelmät. Prototyyppien toimivuutta verrattiin vastaaviin perinteisillä menetelmillä ohjattuihin kaupallisiin tuotteisiin ja havaittiin FPGA-piirien mahdollistaman rinnakkaisen laskennantuomat edut molempien tehoelektroniikkalaitteiden toimivuudessa. Työssä on myösesitetty uusia menetelmiä ja työkaluja FPGA-pohjaisen säätöjärjestelmän kehitykseen ja testaukseen. Esitetyillä menetelmillä tuotteiden kehitys saadaan mahdollisimman nopeaksi ja tehokkaaksi. Lisäksi työssä on kehitetty FPGA:n sisäinen ohjaus- ja kommunikointiväylärakenne, joka palvelee tehoelektroniikkalaitteiden ohjaussovelluksia. Uusi kommunikointirakenne edistää lisäksi jo tehtyjen osajärjestelmien uudelleen käytettävyyttä tulevissa sovelluksissa ja tuotesukupolvissa.
Resumo:
During the latest few years the need for new motor types has grown, since both high efficiency and an accurate dynamic performance are demanded in industrial applications. For this reason, new effective control systems such as direct torque control (DTC) have been developed. Permanent magnet synchronous motors (PMSM) are well suitable for new adjustable speed AC inverter drives, because their efficiency and power factor are not depending on the pole pair number and speed to the same extent as it is the case in induction motors. Therefore, an induction motor (IM) with a mechanical gearbox can often be replaced with a direct PM motor drive. Space as well as costs will be saved, because the efficiency increases and the cost of maintenance decreases as well. This thesis deals with design criterion, analytical calculation and analysis of the permanent magnet synchronous motor for both sinusoidal air-gap flux density and rectangular air-gapflux density. It is examined how the air-gap flux, flux densities, inductances and torque can be estimated analytically for salient pole and non-salient pole motors. It has been sought by means of analytical calculations for the ultimate construction for machines rotating at relative low 300 rpm to 600 rpm speeds, which are suitable speeds e.g. in Pulp&Paper industry. The calculations are verified by using Finite Element calculations and by measuring of prototype motor. The prototype motor is a 45 kW, 600 rpm PMSM with buried V-magnets, which is a very appropriate construction for high torque motors with a high performance. With the purposebuilt prototype machine it is possible not only to verify the analytical calculations but also to show whether the 600 rpm PMSM can replace the 1500 rpm IM with a gear. It can also be tested if the outer dimensions of the PMSM may be the same as for the IM and if the PMSM in this case can produce a 2.5 fold torque, in consequence of which it may be possible to achieve the same power. The thesis also considers the question how to design a permanent magnet synchronous motor for relatively low speed applications that require a high motor torqueand efficiency as well as bearable costs of permanent magnet materials. It is shown how a selection of different parameters affects the motor properties. Key words: Permanent magnet synchronous motor, PMSM, surface magnets, buried magnets
Resumo:
This thesis presents an alternative approach to the analytical design of surface-mounted axialflux permanent-magnet machines. Emphasis has been placed on the design of axial-flux machines with a one-rotor-two-stators configuration. The design model developed in this study incorporates facilities to include both the electromagnetic design and thermal design of the machine as well as to take into consideration the complexity of the permanent-magnet shapes, which is a typical requirement for the design of high-performance permanent-magnet motors. A prototype machine with rated 5 kW output power at 300 min-1 rotation speed has been designed and constructed for the purposesof ascertaining the results obtained from the analytical design model. A comparative study of low-speed axial-flux and low-speed radial-flux permanent-magnet machines is presented. The comparative study concentrates on 55 kW machines with rotation speeds 150 min-1, 300 min-1 and 600 min-1 and is based on calculated designs. A novel comparison method is introduced. The method takes into account the mechanical constraints of the machine and enables comparison of the designed machines, with respect to the volume, efficiency and cost aspects of each machine. It is shown that an axial-flux permanent-magnet machine with one-rotor-two-stators configuration has generally a weaker efficiency than a radial-flux permanent-magnet machine if for all designs the same electric loading, air-gap flux density and current density have been applied. On the other hand, axial-flux machines are usually smaller in volume, especially when compared to radial-flux machines for which the length ratio (axial length of stator stack vs. air-gap diameter)is below 0.5. The comparison results show also that radial-flux machines with alow number of pole pairs, p < 4, outperform the corresponding axial-flux machines.
Resumo:
The general task of clamping devise is to connect the parts to the machining centers so that the work piece could be fixed on its position during the whole machining process. Additionally, the work piece should be clamped easily and rapidly by the machine users. The purpose of this Master’s thesis project was to develop a product design and find out the dimensioning of a hydraulic vise system for Astex Engineering OY, which was taking care of the general principles of product design and development during the design process. Throughout the process, the needs of manufacturing and assembling were taken into consideration for the machinability and minimization of the cost of manufacturing. The most critical component of the clamping devise was modeled by FEM for the issue of strength requirements. This 3D model was created with Solidworks and FEM-analysis was done with Cosmos software. As the result of this design work, a prototype of the hydraulic vise was manufactured for Astex Engineering OY and the practical test.
Resumo:
The layout design process of the packaging laboratory at Lappeenranta University of Technology is documented in this thesis. Layout planning methods are discussed in general. The systematic layout planning procedure is presented in more detail as it is utilised in the case of layout planning of the packaging laboratory. General demands for research laboratory are discussed both from the machine and product perspectives. The possibilities for commercial food processing in the laboratory are discussed from the point of view of foodstuff processing regulations and hygiene demands. The layout planning process is documented and different layout possibilities are presented. Different layout drafts are evaluated and one layout draft is developed to be the final layout of the packaging laboratory. Guideline for technical planning and implementation based on the final layout is given
Resumo:
The aim of the thesis is to design a suitable thermal model that can be used as a tool for constructing the TEFC squirrel cage induction machine in addition to the electromagnetic model. A lumped-parameter thermal model is developed. The related problems and aspects of implementation are discussed in details. Losses are calculated analytically and the loss values are used in the thermal model. The sensitivity analysis is introduced to determine the most critical parameters of the model.
Resumo:
The aim of this thesis is to describe hybrid drive design problems, the advantages and difficulties related to the drive. A review of possible hybrid constructions, benefits of parallel, series and series-parallel hybrids is done. In the thesis analytical and finite element calculations of permanent magnet synchronous machines with embedded magnets were done. The finite element calculations were done using Cedrat’s Flux 2D software. This machine is planned to be used as a motor-generator in a low power parallel hybrid vehicle. The boundary conditions for the design were found from Lucas-TVS Ltd., India. Design Requirements, briefly: • The system DC voltage level is 120 V, which implies Uphase = 49 V (RMS) in a three phase system. • The power output of 10 kW at base speed 1500 rpm (Torque of 65 Nm) is desired. • The maximum outer diameter should not be more than 250 mm, and the maximum core length should not exceed 40 mm. The main difficulties which the author met were the dimensional restrictions. After having designed and analyzed several possible constructions they were compared and the final design selected. Dimensioned and detailed design is performed. Effects of different parameters, such as the number of poles, number of turns and magnetic geometry are discussed. The best modification offers considerable reduction of volume.
Resumo:
Direct-driven permanent magnet synchronous generator is one of the most promising topologies for megawatt-range wind power applications. The rotational speed of the direct-driven generator is very low compared with the traditional electrical machines. The low rotational speed requires high torque to produce megawatt-range power. The special features of the direct-driven generators caused by the low speed and high torque are discussed in this doctoral thesis. Low speed and high torque set high demands on the torque quality. The cogging torque and the load torque ripple must be as low as possible to prevent mechanical failures. In this doctoral thesis, various methods to improve the torque quality are compared with each other. The rotor surface shaping, magnet skew, magnet shaping, and the asymmetrical placement of magnets and stator slots are studied not only by means of torque quality, but also the effects on the electromagnetic performance and manufacturability of the machine are discussed. The heat transfer of the direct-driven generator must be designed to handle the copper losses of the stator winding carrying high current density and to keep the temperature of the magnets low enough. The cooling system of the direct-driven generator applying the doubly radial air cooling with numerous radial cooling ducts was modeled with a lumped-parameter-based thermal network. The performance of the cooling system was discussed during the steady and transient states. The effect of the number and width of radial cooling ducts was explored. The large number of radial cooling ducts drastically increases the impact of the stack end area effects, because the stator stack consists of numerous substacks. The effects of the radial cooling ducts on the effective axial length of the machine were studied by analyzing the crosssection of the machine in the axial direction. The method to compensate the magnet end area leakage was considered. The effect of the cooling ducts and the stack end area effects on the no-load voltages and inductances of the machine were explored by using numerical analysis tools based on the three-dimensional finite element method. The electrical efficiency of the permanent magnet machine with different control methods was estimated analytically over the whole speed and torque range. The electrical efficiencies achieved with the most common control methods were compared with each other. The stator voltage increase caused by the armature reaction was analyzed. The effect of inductance saturation as a function of load current was implemented to the analytical efficiency calculation.