32 resultados para Grid-based clustering approach
Resumo:
Project scope is to utilize Six Sigma DMAIC approach and lean principles to improve production quality of the case company. Six Sigma tools and techniques are explored through a literature review and later used in the quality control phase. The focus is set on the Pareto analysis to demonstrate the most evident development areas in the production. Materials that are not delivered to the customer or materials that damaged during transportation comprise the biggest share of all feedbacks. The goal is set to reduce these feedbacks by 50 %. Production observation pointed out that not only material shortages but also over-production is a daily situation. As a result, an initial picking list where the purchased and own production components can be seen, is created, reduction of over- and underproduction and material marking improvement are seen the most competitive options so that the goal can be reached. The picking list development should still continue to make sure that the list can be used not only in the case study but also in the industrial scale. The reduction of material missing category can be evaluated reliably not sooner than in few years because it takes time to gather the needed statistical information.
Resumo:
Wind power is a rapidly developing, low-emission form of energy production. In Fin-land, the official objective is to increase wind power capacity from the current 1 005 MW up to 3 500–4 000 MW by 2025. By the end of April 2015, the total capacity of all wind power project being planned in Finland had surpassed 11 000 MW. As the amount of projects in Finland is record high, an increasing amount of infrastructure is also being planned and constructed. Traditionally, these planning operations are conducted using manual and labor-intensive work methods that are prone to subjectivity. This study introduces a GIS-based methodology for determining optimal paths to sup-port the planning of onshore wind park infrastructure alignment in Nordanå-Lövböle wind park located on the island of Kemiönsaari in Southwest Finland. The presented methodology utilizes a least-cost path (LCP) algorithm for searching of optimal paths within a high resolution real-world terrain dataset derived from airborne lidar scannings. In addition, planning data is used to provide a realistic planning framework for the anal-ysis. In order to produce realistic results, the physiographic and planning datasets are standardized and weighted according to qualitative suitability assessments by utilizing methods and practices offered by multi-criteria evaluation (MCE). The results are pre-sented as scenarios to correspond various different planning objectives. Finally, the methodology is documented by using tools of Business Process Management (BPM). The results show that the presented methodology can be effectively used to search and identify extensive, 20 to 35 kilometers long networks of paths that correspond to certain optimization objectives in the study area. The utilization of high-resolution terrain data produces a more objective and more detailed path alignment plan. This study demon-strates that the presented methodology can be practically applied to support a wind power infrastructure alignment planning process. The six-phase structure of the method-ology allows straightforward incorporation of different optimization objectives. The methodology responds well to combining quantitative and qualitative data. Additional-ly, the careful documentation presents an example of how the methodology can be eval-uated and developed as a business process. This thesis also shows that more emphasis on the research of algorithm-based, more objective methods for the planning of infrastruc-ture alignment is desirable, as technological development has only recently started to realize the potential of these computational methods.