57 resultados para Educational Materials.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Avhandlingen har sitt utspring i mitt engasjement for elevers møte med kunst i grunnskolen i faget kunst og håndverk og mitt syn på ungdom som kompetente bidragsytere til forskningen om fenomener som angår deres liv. Elevene er informanter til, eller aktører i, forskning på fenomenet dialog med kunst. Dialog med kunst er her definert som en helhetlig prosess som innlemmer alt fra elevenes møte med visuelle kunstverk til deres eget skapende arbeid. At avhandlingens fagdidaktiske problemområde er elevers praktisk skapende virksomhet, knytter undersøkelsen til slöjdpedagogisk forskning. Avhandlingens overgripende hensikt er å bidra til utvikling av fagdidaktikken i kunst og håndverk med utgangspunkt i elevenes erfaringer med kunstundervisningens innhold og metode på ungdomsskoletrinnet. Studien består av kasusstudier på to ungdomsskoler. Data ble innsamlet igjennom intervjuer, deltakende observasjon, dokumenter, prosessbøker og foto av formingsprodukter. Ungdoms dialog med kunst i skolen blir analysert og fremstilt ut fra et erfart og et operasjonalisert perspektiv. Funnene speiles i ulike fagdidaktiske tendenser, det vil si ulike hovedoppfatninger i debatten om det moderne samfunn, og i et virksomhetsteoretisk perspektiv. Resultatene fra undersøkelsen utfordrer oss til en fagdidaktisk nyorientering når det gjelder ungdoms møte med kunstverk i skolen, i retning av et mer ungdomskulturelt innhold og relasjonelle kunstmøter som er narrative, tolkningsorientert, opplevelsesorientert, dialogiske og flerstemmige. Undersøkelsen viser at elevene liker det praktisk skapende arbeidet, men at undervisningen i sterkere grad bør ta i bruk digital kunnskap og handle om hvordan kunst kan brukes som utgangspunkt for skapende arbeid, og den bør legge til rette for det læringspotensialet som ligger i dialogen elevene imellom. Elevene liker en undervisning som ikke bare handler om estetiske virkemidler, materialer og teknikker, men også om kommunikasjon og ytringsfrihet. Resultatene viser at det frie skapende arbeid består av tre likeverdige aspekter: det individuelle, det kulturelle og det sosiale. Både funnene og avhandlingens virksomhetsteoretiske perspektiv kan bidra til diskursen om kreativitetsbegrepet og identitetskonstruksjon i vårt moderne samfunn. Virksomhetssystemet blir i denne avhandlingen utviklet til en teori for skapende arbeid i faget kunst og håndverk, et overgripende fagdidaktisk rammeverk for bild/bildkonst og slöjdfaget satt inn i et nordisk utdanningsperspektiv.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this research was to identify the skills and competences required by Chief Information Officers in their professional life and whether these skills can be developed by means of postgraduate education pro-grams. Although the changing role of the CIO has been studied for years by the academia, the ways of necessary skills development have not been paid significant attention. In order to obtain understanding of the topic and its main issues qualitative method was implemented and questionnaires and interviews were conducted with CIOs and other C-level executives to-gether with analysis of the curricula of postgraduate educational programs in the field of business designed for executives. Business skills and knowledge along with developed communication and leadership skills are among the most discussed and required from CIOs. According to the collected data and its further analysis, although the most important competences of an IT executive are technological, the im-portance of business related skills is emphasized by the majority of re-spondents and supported by the existing theory. Postgraduate educational programs have curricula that can develop the required competences, alt-hough not equally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of biopolymers has been rapid in recent years and the range of available bioplastics is increasing continuously, driven by a growing demand for sustainable solutions. There are several key drivers behind this growth. The oil reservoirs are decreasing which is causing a price increase for the traditional plastic materials and therefore the gap to bioplastics’ price is getting smaller. In addition, other environmental topics, such as waste disposal and green production, have become more and more important factors for institutes, companies and consumers. Legislation and directives have to be taken into account as well in decision making concerning different packaging materials. The new environmental law with waste disposal responsibility will also have an effect on the packaging business. Therefore a need has risen to study closer the current offering closer of bio-based materials that could be used in chocolate packaging. In this Master’s Thesis the bioplastics’, and especially biodegradable materials’ technical properties and their development, availability, possible existing products in the markets, waste disposal possibilities and consumers attitude towards environmental friendly packaging is studied. This is a case study where the offering of biodegradable materials was investigated during March 2013 for Fazer Confectionary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Väisälän palkinnon 2012 saaja.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Globalization, developments in ICT, emergence of knowledge society and other changes have reformed the environment for international higher education during the past few decades. Consequently, higher education sector has moved towards more marketing-oriented system, and universities have started to undertake commercial activities as part of their internationalization. This development has emerged to Finland as well, which forms the basis for this study. The purpose is to examine commercialization in Finnish university landscape and to investigate the ways Finnish university could capitalize its international activities and educational knowledge for export. The research question of the study is: What are the key factors in transforming university internationalization into commercial activity in the Finnish university landscape? The main problem is further divided into three sub-questions: 1) How can a university internationalize; 2) what are the motivational factors behind university internationalization and commercialization; and 3) how can higher education be developed into export services and products? The research was conducted as a qualitative case study of University of Turku. Methods used for gathering and examining data were interviewing and document analysis. Primary data was collected through four individual semi-structured interviews, which were conducted face-to-face. Secondary data that included reports, articles and electronic materials such as university web pages, was used to complement the primary data. The results were analyzed by theming the data into three broader categories of internationalization activities; drivers and motivations and; education export activities. After the data was organized in themes, analysis continued by comparing different parts of data and finding patterns that would explain the phenomenon in Finnish universities. According to the empirical data, University of Turku is currently on the growth state of internationalization with strategies such as internationalization of curriculum, establishment of international research groups, mobility of students and academics, international networking and support services. Commercialization phenomenon is still rather new to the case university, but it has already developed educational products and services for export. The study concludes that university internationalization cannot be directly transformed into commercial activities in the Finnish context, but the universities need to be active in actually creating educational products. The key factors found in this study include: 1) the Finnish government policies behind the current hype of export education; 2) the potential and knowledge capacity of universities for exports; 3) need for additional profits; 4) further internationalization through commercial activities; 5) recognizing and exploiting the specific areas of strength and 6) establishing of cooperative partnerships for better products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inhibition of global warming has become one of the major goals for the coming decades. A key strategy is to replace fossil fuels with more sustainable fuels, which has generated growing interest in the use of waste-derived fuels and of biomass fuels. However, from the chemical point of view, biomass is an inhomogeneous fuel, usually with a high concentration of water and considerable amounts of potassium and chlorine, all of which are known to affect the durability of superheater tubes. To slow down or reduce corrosion, power plants using biomass as fuel have been forced to operate at lower steam temperatures as compared to fossil fuel power plants. This reduces power production efficiency: every 10°C rise in the steam temperature results in an approximate increase of 2% in power production efficiency. More efficient ways to prevent corrosion are needed so that power plants using biomass and waste-derived fuels can operate at higher steam temperatures. The aim of this work was to shed more light on the alkali-induced corrosion of superheater steels at elevated temperatures, focusing on potassium chloride, the alkali salt most frequently encountered in biomass combustion, and on potassium carbonate, another potassium salt occasionally found in fly ash. The mechanisms of the reactions between various corrosive compounds and steels were investigated. Based on the results, the potassium-induced accelerated oxidation of chromia protected steels appears to occur in two consecutive stages. In the first, the protective chromium oxide layer is destroyed through a reaction with potassium leading to the formation of intermediates such as potassium chromate (K2CrO4) and depleting the chromium in the protective oxide layer. As the chromium is depleted, chromium from the bulk steel diffuses into the oxide layer to replenish it. In this stage, the ability of the material to withstand corrosion depends on the chromium content (which affects how long it takes the chromium in the oxide layer to be depleted) and on external factors such as temperature (which affects how fast the chromium diffuses into the protective oxide from the bulk steel). For accelerated oxidation to continue, the presence of chloride appears to be essential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wastes and side streams in the mining industry and different anthropogenic wastes often contain valuable metals in such concentrations their recovery may be economically viable. These raw materials are collectively called secondary raw materials. The recovery of metals from these materials is also environmentally favorable, since many of the metals, for example heavy metals, are hazardous to the environment. This has been noticed in legislative bodies, and strict regulations for handling both mining and anthropogenic wastes have been developed, mainly in the last decade. In the mining and metallurgy industry, important secondary raw materials include, for example, steelmaking dusts (recoverable metals e.g. Zn and Mo), zinc plant residues (Ag, Au, Ga, Ge, In) and waste slurry from Bayer process alumina production (Ga, REE, Ti, V). From anthropogenic wastes, waste electrical and electronic equipment (WEEE), among them LCD screens and fluorescent lamps, are clearly the most important from a metals recovery point of view. Metals that are commonly recovered from WEEE include, for example, Ag, Au, Cu, Pd and Pt. In LCD screens indium, and in fluorescent lamps, REEs, are possible target metals. Hydrometallurgical processing routes are highly suitable for the treatment of complex and/or low grade raw materials, as secondary raw materials often are. These solid or liquid raw materials often contain large amounts of base metals, for example. Thus, in order to recover valuable metals, with small concentrations, highly selective separation methods, such as hydrometallurgical routes, are needed. In addition, hydrometallurgical processes are also seen as more environmental friendly, and they have lower energy consumption, when compared to pyrometallurgical processes. In this thesis, solvent extraction and ion exchange are the most important hydrometallurgical separation methods studied. Solvent extraction is a mainstream unit operation in the metallurgical industry for all kinds of metals, but for ion exchange, practical applications are not as widespread. However, ion exchange is known to be particularly suitable for dilute feed solutions and complex separation tasks, which makes it a viable option, especially for processing secondary raw materials. Recovering valuable metals was studied with five different raw materials, which included liquid and solid side streams from metallurgical industries and WEEE. Recovery of high purity (99.7%) In, from LCD screens, was achieved by leaching with H2SO4, extracting In and Sn to D2EHPA, and selectively stripping In to HCl. In was also concentrated in the solvent extraction stage from 44 mg/L to 6.5 g/L. Ge was recovered as a side product from two different base metal process liquors with Nmethylglucamine functional chelating ion exchange resin (IRA-743). Based on equilibrium and dynamic modeling, a mechanism for this moderately complex adsorption process was suggested. Eu and Y were leached with high yields (91 and 83%) by 2 M H2SO4 from a fluorescent lamp precipitate of waste treatment plant. The waste also contained significant amounts of other REEs such as Gd and Tb, but these were not leached with common mineral acids in ambient conditions. Zn was selectively leached over Fe from steelmaking dusts with a controlled acidic leaching method, in which the pH did not go below, but was held close as possible to, 3. Mo was also present in the other studied dust, and was leached with pure water more effectively than with the acidic methods. Good yield and selectivity in the solvent extraction of Zn was achieved by D2EHPA. However, Fe needs to be eliminated in advance, either by the controlled leaching method or, for example, by precipitation. 100% Pure Mo/Cr product was achieved with quaternary ammonium salt (Aliquat 336) directly from the water leachate, without pH adjustment (pH 13.7). A Mo/Cr mixture was also obtained from H2SO4 leachates with hydroxyoxime LIX 84-I and trioctylamine (TOA), but the purities were 70% at most. However with Aliquat 336, again an over 99% pure mixture was obtained. High selectivity for Mo over Cr was not achieved with any of the studied reagents. Ag-NaCl solution was purified from divalent impurity metals by aminomethylphosphonium functional Lewatit TP-260 ion exchange resin. A novel preconditioning method, named controlled partial neutralization, with conjugate bases of weak organic acids, was used to control the pH in the column to avoid capacity losses or precipitations. Counter-current SMB was shown to be a better process configuration than either batch column operation or the cross-current operation conventionally used in the metallurgical industry. The raw materials used in this thesis were also evaluated from an economic point of view, and the precipitate from a waste fluorescent lamp treatment process was clearly shown to be the most promising.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sloyd as an activity concretizes man’s ability to, with the help of mind and body, reshape materials into objects and change her conditions for survival. The sloyd actor outside school works when the spirit moves her, while the pupil in school is expected to sloyd regardless of motivation. Subject teachers become experts on sloyd in educational settings, while the qualification requirements may set the class teachers’ voluntariness within parenthesis. All class teachers qualify to teach all core subjects of the national curriculum in Finland from preschool to grade six. The aim of the current thesis is to deepen the knowledge on how the science of sloyd education can support class teacher students’ future teaching in sloyd. In the empirical part of the study, Swedish-speaking Finnish class teacher students’ views on technical sloyd as one of their future subjects for teaching are examined. The class teacher’s qualifying skills in teaching technical sloyd are expected to take shape during only a few ECTS study points. The teacher students’ experience of the subject from the pupil’s perspective is supposed to move into a budding teacher subject. In a research-based teacher education, self-reflection and reflection as a dialogue are extended aided by research results. Intuitive thinking interplays with rational thinking during this time. The teacher student’s approach to make use of the autonomous free space in teaching is, in the current thesis, as considerations where the individual weighs the pros and cons in relation to various phenomena in sloyd and the school overall. The basis for an individual autonomy is shaped and is expected to interplay on the common arena of autonomy. In the exercise of their profession, the class teacher teaching sloyd is expected to oscillate between the sloyd educational practice and theory. The first step in this movement within the teacher education is the coverage of a selection of theories during the studies. The empirical part of the study is carried out at two separate occasions with directed open-ended interviews with fifteen class teacher students in the beginning and end of their first year of study. The data was analysed with a hermeneutic approach and a qualitatively oriented approach to content analysis. The results are mirrored against theory within the science of sloyd education. The results show that class teacher students have a versatile view of educational sloyd. The overall results overthrow parts of the researcher’s pre-understanding. The viewpoint of the students seems to broaden from a merely manual activity to seeing sloyd as an educational activity. In order for the results to gain significance in the teacher education of the future, a line of reasoning is conducted in order to recommend an extended dialogue and thirteen possible themes for enriching discussions are put forth as a result of the present study. The extended dialogue focuses on that teacher education should make conscious ventures to create opportunities for the students to take part in effective discussions on the subject of sloyd, complementing the existing dialogue between the teacher educator and the students. This thesis lends support to reflections on the following aspects of educational sloyd in these dialogues: the reasons for why the sloyd subject exists, the ambitions of the subject, the content and organization of the subject for students as well as for the teacher educators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Negative refractive index materials and propagation of electromagnetic waves in them started to draw attention of scientists not so long ago. This review highlights historically important and recent papers on practical and theoretical aspects related to these issues. Namely, basic properties and peculiarities of such materials related to both their design and wave propagation in them, experimental verification of predictions theoretically made for them, possible practical applications and prospects in this area are considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrothermal carbonization (HTC) is a thermochemical process used in the production of charred matter similar in composition to coal. It involves the use of wet, carbohydrate feedstock, a relatively low temperature environment (180 °C-350 °C) and high autogenous pressure (up to 2,4 MPa) in a closed system. Various applications of the solid char product exist, opening the way for a range of biomass feedstock materials to be exploited that have so far proven to be troublesome due to high water content or other factors. Sludge materials are investigated as candidates for industrial-scale HTC treatment in fuel production. In general, HTC treatment of pulp and paper industry sludge (PPS) and anaerobically digested municipal sewage sludge (ADS) using existing technology is competitive with traditional treatment options, which range in price from EUR 30-80 per ton of wet sludge. PPS and ADS can be treated by HTC for less than EUR 13 and 33, respectively. Opportunities and challenges related to HTC exist, as this relatively new technology moves from laboratory and pilot-scale production to an industrial scale. Feedstock materials, end-products, process conditions and local markets ultimately determine the feasibility of a given HTC operation. However, there is potential for sludge materials to be converted to sustainable bio-coal fuel in a Finnish context.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The steel industry produces, besides steel, also solid mineral by-products or slags, while it emits large quantities of carbon dioxide (CO2). Slags consist of various silicates and oxides which are formed in chemical reactions between the iron ore and the fluxing agents during the high temperature processing at the steel plant. Currently, these materials are recycled in the ironmaking processes, used as aggregates in construction, or landfilled as waste. The utilization rate of the steel slags can be increased by selectively extracting components from the mineral matrix. As an example, aqueous solutions of ammonium salts such as ammonium acetate, chloride and nitrate extract calcium quite selectively already at ambient temperature and pressure conditions. After the residual solids have been separated from the solution, calcium carbonate can be precipitated by feeding a CO2 flow through the solution. Precipitated calcium carbonate (PCC) is used in different applications as a filler material. Its largest consumer is the papermaking industry, which utilizes PCC because it enhances the optical properties of paper at a relatively low cost. Traditionally, PCC is manufactured from limestone, which is first calcined to calcium oxide, then slaked with water to calcium hydroxide and finally carbonated to PCC. This process emits large amounts of CO2, mainly because of the energy-intensive calcination step. This thesis presents research work on the scale-up of the above-mentioned ammonium salt based calcium extraction and carbonation method, named Slag2PCC. Extending the scope of the earlier studies, it is now shown that the parameters which mainly affect the calcium utilization efficiency are the solid-to-liquid ratio of steel slag and the ammonium salt solvent solution during extraction, the mean diameter of the slag particles, and the slag composition, especially the fractions of total calcium, silicon, vanadium and iron as well as the fraction of free calcium oxide. Regarding extraction kinetics, slag particle size, solid-to-liquid ratio and molar concentration of the solvent solution have the largest effect on the reaction rate. Solvent solution concentrations above 1 mol/L NH4Cl cause leaching of other elements besides calcium. Some of these such as iron and manganese result in solution coloring, which can be disadvantageous for the quality of the PCC product. Based on chemical composition analysis of the produced PCC samples, however, the product quality is mainly similar as in commercial products. Increasing the novelty of the work, other important parameters related to assessment of the PCC quality, such as particle size distribution and crystal morphology are studied as well. As in traditional PCC precipitation process, the ratio of calcium and carbonate ions controls the particle shape; a higher value for [Ca2+]/[CO32-] prefers precipitation of calcite polymorph, while vaterite forms when carbon species are present in excess. The third main polymorph, aragonite, is only formed at elevated temperatures, above 40-50 °C. In general, longer precipitation times cause transformation of vaterite to calcite or aragonite, but also result in particle agglomeration. The chemical equilibrium of ammonium and calcium ions and dissolved ammonia controlling the solution pH affects the particle sizes, too. Initial pH of 12-13 during the carbonation favors nonagglomerated particles with a diameter of 1 μm and smaller, while pH values of 9-10 generate more agglomerates of 10-20 μm. As a part of the research work, these findings are implemented in demonstrationscale experimental process setups. For the first time, the Slag2PCC technology is tested in scale of ~70 liters instead of laboratory scale only. Additionally, design of a setup of several hundreds of liters is discussed. For these purposes various process units such as inclined settlers and filters for solids separation, pumps and stirrers for material transfer and mixing as well as gas feeding equipment are dimensioned and developed. Overall emissions reduction of the current industrial processes and good product quality as the main targets, based on the performed partial life cycle assessment (LCA), it is most beneficial to utilize low concentration ammonium salt solutions for the Slag2PCC process. In this manner the post-treatment of the products does not require extensive use of washing and drying equipment, otherwise increasing the CO2 emissions of the process. The low solvent concentration Slag2PCC process causes negative CO2 emissions; thus, it can be seen as a carbon capture and utilization (CCU) method, which actually reduces the anthropogenic CO2 emissions compared to the alternative of not using the technology. Even if the amount of steel slag is too small for any substantial mitigation of global warming, the process can have both financial and environmental significance for individual steel manufacturers as a means to reduce the amounts of emitted CO2 and landfilled steel slag. Alternatively, it is possible to introduce the carbon dioxide directly into the mixture of steel slag and ammonium salt solution. The process would generate a 60-75% pure calcium carbonate mixture, the remaining 25-40% consisting of the residual steel slag. This calcium-rich material could be re-used in ironmaking as a fluxing agent instead of natural limestone. Even though this process option would require less process equipment compared to the Slag2PCC process, it still needs further studies regarding the practical usefulness of the products. Nevertheless, compared to several other CO2 emission reduction methods studied around the world, the within this thesis developed and studied processes have the advantage of existing markets for the produced materials, thus giving also a financial incentive for applying the technology in practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the framework of the biorefinery concept researchers aspire to optimize the utilization of plant materials, such as agricultural wastes and wood. For most of the known processes, the first steps in the valorisation of biomass are the extraction and purification of the individual components. The obtained raw products by means of a controlled separation can consecutively be modified to result in biofuels or biogas for energy production, but also in value-added products such as additives and important building blocks for the chemical and material industries. Considerable efforts are undertaken in order to substitute the use of oil-based starting materials or at least minimize their processing for the production of everyday goods. Wood is one of the raw materials, which have gained large attention in the last decades and its composition has been studied in detail. Nowadays, the extraction of water-soluble hemicelluloses from wood is well known and so for example xylan can be obtained from hardwoods and O-acetyl galactoglucomannans (GGMs) from softwoods. The aim of this work was to develop water-soluble amphiphilic materials of GGM and to assess their potential use as additives. Furthermore, GGM was also applied as a crosslinker in the synthesis of functional hydrogels for the removal of toxic metals and metalloid ions from aqueous solutions. The distinguished products were obtained by several chemical approaches and analysed by nuclear magnetic resonance spectroscopy (NMR), Fourier transform infrared spectroscopy (FTIR), size exclusion chromatography (SEC), thermal gravimetric analysis (TGA), scanning electron microscope SEM, among others. Bio-based surfactants were produced by applying GGM and different fatty acids as starting materials. On one hand, GGM-grafted-fatty acids were prepared by esterification and on the other hand, well-defined GGM-block-fatty acid derivatives were obtained by linking amino-functional fatty acids to the reducing end of GGM. The reaction conditions for the syntheses were optimized and the resultant amphiphilic GGM derivatives were evaluated concerning their ability to reduce the surface tension of water as surfactants. Furthermore, the block-structured derivatives were tested in respect to their applicability as additives for the surface modification of cellulosic materials. Besides the GGM surfactants with a bio-based hydrophilic and a bio-based hydrophobic part, also GGM block-structured derivatives with a synthetic hydrophobic tail, consisting of a polydimethylsiloxane chain, were prepared and assessed for the hydrophobization of surface of nanofibrillated cellulose films. In order to generate GGM block-structured derivatives containing a synthetic tail with distinguished physical and chemical properties, as well as a tailored chain length, a controlled polymerization method was used. Therefore, firstly an initiator group was introduced at the reducing end of the GGM and consecutively single electron transfer-living radical polymerization (SET-LRP) was performed by applying three different monomers in individual reactions. For the accomplishment of the synthesis and the analysis of the products, challenges related to the solubility of the reactants had to be overcome. Overall, a synthesis route for the production of GGM block-copolymers bearing different synthetic polymer chains was developed and several derivatives were obtained. Moreover, GGM with different molar masses were, after modification, used as a crosslinker in the synthesis of functional hydrogels. Hereby, a cationic monomer was used during the free radical polymerization and the resultant hydrogels were successfully tested for the removal of chromium and arsenic ions from aqueous solutions. The hydrogel synthesis was tailored and materials with distinguished physical properties, such as the swelling rate, were obtained after purification. The results generated in this work underline the potential of bio-based products and the urge to continue carrying out research in order to be able to use more green chemicals for the manufacturing of biorenewable and biodegradable daily products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent decades, industrial activity growth and increasing water usage worldwide have led to the release of various pollutants, such as toxic heavy metals and nutrients, into the aquatic environment. Modified nanocellulose and microcellulose-based adsorption materials have the potential to remove these contaminants from aqueous solutions. The present research consisted of the preparation of five different nano/microcellulose-based adsorbents, their characterization, the study of adsorption kinetics and isotherms, the determination of adsorption mechanisms, and an evaluation of adsorbents’ regeneration properties. The same well known reactions and modification methods that were used for modifying conventional cellulose also worked for microfibrillated cellulose (MFC). The use of succinic anhydride modified mercerized nanocellulose, and aminosilane and hydroxyapatite modified nanostructured MFC for the removal of heavy metals from aqueous solutions exhibited promising results. Aminosilane, epoxy and hydroxyapatite modified MFC could be used as a promising alternative for H2S removal from aqueous solutions. In addition, new knowledge about the adsorption properties of carbonated hydroxyapatite modified MFC as multifunctional adsorbent for the removal of both cations and anions ions from water was obtained. The maghemite nanoparticles (Fe3O4) modified MFC was found to be a highly promising adsorbent for the removal of As(V) from aqueous solutions due to its magnetic properties, high surface area, and high adsorption capacity . The maximum removal efficiencies of each adsorbent were studied in batch mode. The results of adsorption kinetics indicated very fast removal rates for all the studied pollutants. Modeling of adsorption isotherms and adsorption kinetics using various theoretical models provided information about the adsorbent’s surface properties and the adsorption mechanisms. This knowledge is important for instance, in designing water treatment units/plants. Furthermore, the correspondence between the theory behind the model and properties of the adsorbent as well as adsorption mechanisms were also discussed. On the whole, both the experimental results and theoretical considerations supported the potential applicability of the studied nano/microcellulose-based adsorbents in water treatment applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Presentation at "Soome-ugri keelte andmebaasid ja e-leksikograafia" at Eesti Keele Instituut (Institution of Estonian Languages) in Tallnn on the 18th of November 2014.