49 resultados para ABSTRACT PARABOLIC PROBLEMS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

En option är ett finansiellt kontrakt som ger dess innehavare en rättighet (men medför ingen skyldighet) att sälja eller köpa någonting (till exempel en aktie) till eller från säljaren av optionen till ett visst pris vid en bestämd tidpunkt i framtiden. Den som säljer optionen binder sig till att gå med på denna framtida transaktion ifall optionsinnehavaren längre fram bestämmer sig för att inlösa optionen. Säljaren av optionen åtar sig alltså en risk av att den framtida transaktion som optionsinnehavaren kan tvinga honom att göra visar sig vara ofördelaktig för honom. Frågan om hur säljaren kan skydda sig mot denna risk leder till intressanta optimeringsproblem, där målet är att hitta en optimal skyddsstrategi under vissa givna villkor. Sådana optimeringsproblem har studerats mycket inom finansiell matematik. Avhandlingen "The knapsack problem approach in solving partial hedging problems of options" inför en ytterligare synpunkt till denna diskussion: I en relativt enkel (ändlig och komplett) marknadsmodell kan nämligen vissa partiella skyddsproblem beskrivas som så kallade kappsäcksproblem. De sistnämnda är välkända inom en gren av matematik som heter operationsanalys. I avhandlingen visas hur skyddsproblem som tidigare lösts på andra sätt kan alternativt lösas med hjälp av metoder som utvecklats för kappsäcksproblem. Förfarandet tillämpas även på helt nya skyddsproblem i samband med så kallade amerikanska optioner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Children’s pain symptoms and sleep problems are among the most common health complaints. They distract children from activities, decrease the quality of life, contribute to a significant economic burden, and have shown continuity into adulthood. The main aims of this thesis were to investigate long-term changes in the prevalence of pain symptoms and sleep problems among Finnish school-aged children, and the later mental health of those who in childhood experience pain. Prevalence, co-occurrence, and associated psychosocial factors of pain symptoms and sleep problems were also assessed. In study I, prevalence changes in eight-year-old children’s pain symptoms and sleep problems were investigated in three cross-sectional population-based samples (years 1989: n=1038, 1999: n=1035, and 2005: n=1030). In study II, cross-sectional associations between pain symptoms, sleep problems, and psychosocial factors were assessed among 13-18-year-old adolescents (n=2476). In studies III and IV, associations between pain symptoms at age eight (n=6017), and register-based data on antidepressant use and severe suicidality by age 24, were examined in a nationwide birth cohort. Pain symptoms and sleep problems were common and often co-occurred. A considerable number of children’s pain symptoms remained unrecognized by the parents. The prevalence of pain symptoms, sleep problems, and multiple concurrent symptoms approximately doubled from 1989 to 2005. Psychiatric difficulties or demographic factors did not explain the increase. Psychosocial factors that were associated with pain, sleep problems, and a higher number of symptoms, were female sex, psychological difficulties, emotional symptoms, smoking, victimization, and feeling not cared about by teachers. In longitudinal analyses, the child’s own report of headache, and to a smaller degree the parental report of the child’s abdominal pain predicted later antidepressant use. Parental report of the child’s abdominal pain predicted severe suicidality among males. If one of the symptoms is present, health care professionals should inquire about other symptoms as well. Questions should be directed to the children, not only to their parents. Inquiring about psychiatric difficulties, substance use, victimization, and relations with teachers should be included as a part of the assessment. Further studies are needed to clarify the reasons that underlie the increased prevalence rates, and the factors that may increase or decrease the risk for later mental health problems among pain-suffering children.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Työn tavoitteena oli selvittää yrityksen tuotekehitysorganisaation tuoteylläpitotoiminnan nykytila ja kartoittaa sen mahdolliset ongelmakohdat sekä kehityskohteet. Lisäksi tavoitteena oli vertailla yrityksen toimintamalleja toisen yrityksen vastaavaan organisaatioon kartoitettujen ongelmakohtien pohjalta, ja laatia kehitysehdotus ongelmien ratkaisemiseksi. Tutkimusmenetelminä käytettiin nykytilaselvityksessä semistrukturoituja asiantuntijahaastatteluja ja vertailututkimusta (engl. benchmarking). Kehitysehdotuksen laatimisen tueksi työhön sisältyi myös kirjallisuuskatsaus, jossa käsiteltiin esimerkiksi tuotteen elinkaarenhallintaa, konfiguraationhallintaa ja prosessijohtamista. Nykytilaselvityksen tuloksena oli kuvaus yrityksen tuoteylläpidontoiminnasta sekä havaituista ongelmakohdista. Vertailututkimuksen tuloksena saatiin kuvaus kohdeyrityksen kartoitettuihin ongelmakohtiin liittyvistä toimintamalleista, sekä joitain ratkaisuvaihtoehtoja. Nykytilaselvityksen ja vertailututkimuksen tulosten sekä kirjallisuuskatsauksen perusteella laadittu kehitysehdotus perustuu konfiguraationhallintasuunnitelman pohjaan, johon on sisällytetty kaikki ratkaisuehdotukset. Kehitysehdotuksessa esitetyt ratkaisuehdotukset vastaavat lähtökohtaisesti kartoitettuihin ongelmakohtiin, mutta ne vaativat vielä jatkokehittelyä. Työn tulokset toimivat pohjana yksityiskohtaisemmalle suunnittelulle ja jatkokehittelylle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Statistical analyses of measurements that can be described by statistical models are of essence in astronomy and in scientific inquiry in general. The sensitivity of such analyses, modelling approaches, and the consequent predictions, is sometimes highly dependent on the exact techniques applied, and improvements therein can result in significantly better understanding of the observed system of interest. Particularly, optimising the sensitivity of statistical techniques in detecting the faint signatures of low-mass planets orbiting the nearby stars is, together with improvements in instrumentation, essential in estimating the properties of the population of such planets, and in the race to detect Earth-analogs, i.e. planets that could support liquid water and, perhaps, life on their surfaces. We review the developments in Bayesian statistical techniques applicable to detections planets orbiting nearby stars and astronomical data analysis problems in general. We also discuss these techniques and demonstrate their usefulness by using various examples and detailed descriptions of the respective mathematics involved. We demonstrate the practical aspects of Bayesian statistical techniques by describing several algorithms and numerical techniques, as well as theoretical constructions, in the estimation of model parameters and in hypothesis testing. We also apply these algorithms to Doppler measurements of nearby stars to show how they can be used in practice to obtain as much information from the noisy data as possible. Bayesian statistical techniques are powerful tools in analysing and interpreting noisy data and should be preferred in practice whenever computational limitations are not too restrictive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vaikka liiketoimintatiedon hallintaa sekä johdon päätöksentekoa on tutkittu laajasti, näiden kahden käsitteen yhteisvaikutuksesta on olemassa hyvin rajallinen määrä tutkimustietoa. Tulevaisuudessa aiheen tärkeys korostuu, sillä olemassa olevan datan määrä kasvaa jatkuvasti. Yritykset tarvitsevat jatkossa yhä enemmän kyvykkyyksiä sekä resursseja, jotta sekä strukturoitua että strukturoimatonta tietoa voidaan hyödyntää lähteestä riippumatta. Nykyiset Business Intelligence -ratkaisut mahdollistavat tehokkaan liiketoimintatiedon hallinnan osana johdon päätöksentekoa. Aiemman kirjallisuuden pohjalta, tutkimuksen empiirinen osuus tunnistaa liiketoimintatiedon hyödyntämiseen liittyviä tekijöitä, jotka joko tukevat tai rajoittavat johdon päätöksentekoprosessia. Tutkimuksen teoreettinen osuus johdattaa lukijan tutkimusaiheeseen kirjallisuuskatsauksen avulla. Keskeisimmät tutkimukseen liittyvät käsitteet, kuten Business Intelligence ja johdon päätöksenteko, esitetään relevantin kirjallisuuden avulla – tämän lisäksi myös dataan liittyvät käsitteet analysoidaan tarkasti. Tutkimuksen empiirinen osuus rakentuu tutkimusteorian pohjalta. Tutkimuksen empiirisessä osuudessa paneudutaan tutkimusteemoihin käytännön esimerkein: kolmen tapaustutkimuksen avulla tutkitaan sekä kuvataan toisistaan irrallisia tapauksia. Jokainen tapaus kuvataan sekä analysoidaan teoriaan perustuvien väitteiden avulla – nämä väitteet ovat perusedellytyksiä menestyksekkäälle liiketoimintatiedon hyödyntämiseen perustuvalle päätöksenteolle. Tapaustutkimusten avulla alkuperäistä tutkimusongelmaa voidaan analysoida tarkasti huomioiden jo olemassa oleva tutkimustieto. Analyysin tulosten avulla myös yksittäisiä rajoitteita sekä mahdollistavia tekijöitä voidaan analysoida. Tulokset osoittavat, että rajoitteilla on vahvasti negatiivinen vaikutus päätöksentekoprosessin onnistumiseen. Toisaalta yritysjohto on tietoinen liiketoimintatiedon hallintaan liittyvistä positiivisista seurauksista, vaikka kaikkia mahdollisuuksia ei olisikaan hyödynnetty. Tutkimuksen merkittävin tulos esittelee viitekehyksen, jonka puitteissa johdon päätöksentekoprosesseja voidaan arvioida sekä analysoida. Despite the fact that the literature on Business Intelligence and managerial decision-making is extensive, relatively little effort has been made to research the relationship between them. This particular field of study has become important since the amount of data in the world is growing every second. Companies require capabilities and resources in order to utilize structured data and unstructured data from internal and external data sources. However, the present Business Intelligence technologies enable managers to utilize data effectively in decision-making. Based on the prior literature, the empirical part of the thesis identifies the enablers and constraints in computer-aided managerial decision-making process. In this thesis, the theoretical part provides a preliminary understanding about the research area through a literature review. The key concepts such as Business Intelligence and managerial decision-making are explored by reviewing the relevant literature. Additionally, different data sources as well as data forms are analyzed in further detail. All key concepts are taken into account when the empirical part is carried out. The empirical part obtains an understanding of the real world situation when it comes to the themes that were covered in the theoretical part. Three selected case companies are analyzed through those statements, which are considered as critical prerequisites for successful computer-aided managerial decision-making. The case study analysis, which is a part of the empirical part, enables the researcher to examine the relationship between Business Intelligence and managerial decision-making. Based on the findings of the case study analysis, the researcher identifies the enablers and constraints through the case study interviews. The findings indicate that the constraints have a highly negative influence on the decision-making process. In addition, the managers are aware of the positive implications that Business Intelligence has for decision-making, but all possibilities are not yet utilized. As a main result of this study, a data-driven framework for managerial decision-making is introduced. This framework can be used when the managerial decision-making processes are evaluated and analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In today’s world because of the rapid advancement in the field of technology and business, the requirements are not clear, and they are changing continuously in the development process. Due to those changes in the requirements the software development becomes very difficult. Use of traditional software development methods such as waterfall method is not a good option, as the traditional software development methods are not flexible to requirements and the software can be late and over budget. For developing high quality software that satisfies the customer, the organizations can use software development methods, such as agile methods which are flexible to change requirements at any stage in the development process. The agile methods are iterative and incremental methods that can accelerate the delivery of the initial business values through the continuous planning and feedback, and there is close communication between the customer and developers. The main purpose of the current thesis is to find out the problems in traditional software development and to show how agile methods reduced those problems in software development. The study also focuses the different success factors of agile methods, the success rate of agile projects and comparison between traditional and agile software development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work investigates theoretical properties of symmetric and anti-symmetric kernels. First chapters give an overview of the theory of kernels used in supervised machine learning. Central focus is on the regularized least squares algorithm, which is motivated as a problem of function reconstruction through an abstract inverse problem. Brief review of reproducing kernel Hilbert spaces shows how kernels define an implicit hypothesis space with multiple equivalent characterizations and how this space may be modified by incorporating prior knowledge. Mathematical results of the abstract inverse problem, in particular spectral properties, pseudoinverse and regularization are recollected and then specialized to kernels. Symmetric and anti-symmetric kernels are applied in relation learning problems which incorporate prior knowledge that the relation is symmetric or anti-symmetric, respectively. Theoretical properties of these kernels are proved in a draft this thesis is based on and comprehensively referenced here. These proofs show that these kernels can be guaranteed to learn only symmetric or anti-symmetric relations, and they can learn any relations relative to the original kernel modified to learn only symmetric or anti-symmetric parts. Further results prove spectral properties of these kernels, central result being a simple inequality for the the trace of the estimator, also called the effective dimension. This quantity is used in learning bounds to guarantee smaller variance.