34 resultados para wastewater pumping station
Resumo:
This thesis presents briefly the basic operation and use of centrifugal pumps and parallel pumping applications. The characteristics of parallel pumping applications are compared to circuitry, in order to search analogy between these technical fields. The purpose of studying circuitry is to find out if common software tools for solving circuit performance could be used to observe parallel pumping applications. The empirical part of the thesis introduces a simulation environment for parallel pumping systems, which is based on circuit components of Matlab Simulink —software. The created simulation environment ensures the observation of variable speed controlled parallel pumping systems in case of different controlling methods. The introduced simulation environment was evaluated by building a simulation model for actual parallel pumping system at Lappeenranta University of Technology. The simulated performance of the parallel pumps was compared to measured values of the actual system. The gathered information shows, that if the initial data of the system and pump perfonnance is adequate, the circuitry based simulation environment can be exploited to observe parallel pumping systems. The introduced simulation environment can represent the actual operation of parallel pumps in reasonably accuracy. There by the circuitry based simulation can be used as a researching tool to develop new controlling ways for parallel pumps.
Resumo:
In many industries, such as petroleum production, and the petrochemical, metal, food and cosmetics industries, wastewaters containing an emulsion of oil in water are often produced. The emulsions consist of water (up to 90%), oils (mineral, animal, vegetable and synthetic), surfactants and other contaminates. In view of its toxic nature and its deleterious effects on the surrounding environment (soil, water) such wastewater needs to be treated before release into natural water ways. Membrane-based processes have successfully been applied in industrial applications and are considered as possible candidates for the treatment of oily wastewaters. Easy operation, lower cost, and in some cases, the ability to reduce contaminants below existing pollution limits are the main advantages of these systems. The main drawback of membranes is flux decline due tofouling and concentration polarisation. The complexity of oil-containing systems demands complementary studies on issues related to the mitigation of fouling and concentration polarisation in membranebased ultrafiltration. In this thesis the effect of different operating conditions (factors) on ultrafiltration of oily water is studied. Important factors are normally correlated and, therefore, their effect should be studied simultaneously. This work uses a novel approach to study different operating conditions, like pressure, flow velocity, and temperature, and solution properties, like oil concentration (cutting oil, diesel, kerosene), pH, and salt concentration (CaCl2 and NaCl)) in the ultrafiltration of oily water, simultaneously and in a systematic way using an experimental design approach. A hypothesis is developed to describe the interaction between the oil drops, salt and the membrane surface. The optimum conditions for ultrafiltration and the contribution of each factor in the ultrafiltration of oily water are evaluated. It is found that the effect on permeate flux of the various factors studied strongly depended on the type of oil, the type of membrane and the amount of salts. The thesis demonstrates that a system containing oil is very complex, and that fouling and flux decline can be observed even at very low pressures. This means that only the weak form of the critical flux exists for such systems. The cleaning of the fouled membranes and the influence of different parameters (flow velocity, temperature, time, pressure, and chemical concentration (SDS, NaOH)) were evaluated in this study. It was observed that fouling, and consequently cleaning, behaved differently for the studied membranes. Of the membranes studied, the membrane with the lowest propensity for fouling and the most easily cleaned was the regenerated cellulose membrane (C100H). In order to get more information about the interaction between the membrane and the components of the emulsion, a streaming potential study was performed on the membrane. The experiments were carried out at different pH and oil concentration. It was seen that oily water changed the surface charge of the membrane significantly. The surface charge and the streaming potential during different stages of filtration were measured and analysed being a new method for fouling of oil in this thesis. The surface charge varied in different stages of filtration. It was found that the surface charge of a cleaned membrane was not the same as initially; however, the permeability was equal to that of a virgin membrane. The effect of filtration mode was studied by performing the filtration in both cross-flow and deadend mode. The effect of salt on performance was considered in both studies. It was found that salt decreased the permeate flux even at low concentration. To test the effect of hydrophilicity change, the commercial membranes used in this thesis were modified by grafting (PNIPAAm) on their surfaces. A new technique (corona treatment) was used for this modification. The effect of modification on permeate flux and retention was evaluated. The modified membranes changed their pore size around 33oC resulting in different retention and permeability. The obtained results in this thesis can be applied to optimise the operation of a membrane plant under normal or shock conditions or to modify the process such that it becomes more efficient or effective.
Resumo:
The UPM-Kymmene Oyj Pietarsaari pulp and paper Mill biological wastewater treatment plant was built in the 1980's and the plant has been in use ever since. During the past years there have been problems with deviations. The wastewater treatment plant needs update, especially the aeration basin, where the old surface aerators cannot produce enough mixing and indroduce oxygen enough to the wastewater. In this thesis how extra aeration with oxygen affects the wastewater treatment plant effluent was studied. In the literature part the main focus is in aeration devices, which can be used in biological wastewater treatment. The target is to compare different kind of aerators, which are suitable for pulp and paper wastewater treatment. Studies show, that EDI-aerators are commonly used and also most suitable. In the experimental part, the focus is on the Pietarsaari Mills wastewater treatment plant and oxygen aeration during autumn 2008. This thesis presents the results of the trial run. Studies show, that extra oxygen devices can produce lot a of mixing and the oxygenation capacity was more than what the micro-organisms needed. The effect on sludge quality could not been seen during the trial runs.
Resumo:
Efficient designs and operations of water and wastewater treatment systems are largely based on mathematical calculations. This even applies to training in the treatment systems. Therefore, it is necessary that calculation procedures are developed and computerised a priori for such applications to ensure effectiveness. This work was aimed at developing calculation procedures for gas stripping, depth filtration, ion exchange, chemical precipitation, and ozonation wastewater treatment technologies to include them in ED-WAVE, a portable computer based tool used in design, operations and training in wastewater treatment. The work involved a comprehensive online and offline study of research work and literature, and application of practical case studies to generate ED-WAVE compatible representations of the treatment technologies which were then uploaded into the tool.
Resumo:
Rising population, rapid urbanisation and growing industrialisation have severely stressed water quality and its availability in Malawi. In addition, financial and institutional problems and the expanding agro industry have aggravated this problem. The situation is worsened by depleting water resources and pollution from untreated sewage and industrial effluent. The increasing scarcity of clean water calls for the need for appropriate management of available water resources. There is also demand for a training system for conceptual design and evaluation for wastewater treatment in order to build the capacity for technical service providers and environmental practitioners in the country. It is predicted that Malawi will face a water stress situation by 2025. In the city of Blantyre, this situation is aggravated by the serious pollution threat from the grossly inadequate sewage treatment capacity. This capacity is only 23.5% of the wastewater being generated presently. In addition, limited or non-existent industrial effluent treatment has contributed to the severe water quality degradation. This situation poses a threat to the ecologically fragile and sensitive receiving water courses within the city. This water is used for domestic purposes further downstream. This manuscript outlines the legal and policy framework for wastewater treatment in Malawi. The manuscript also evaluates the existing wastewater treatment systems in Blantyre. This evaluation aims at determining if the effluent levels at the municipal plants conform to existing standards and guidelines and other associated policy and regulatory frameworks. The raw material at all the three municipal plants is sewage. The typical wastewater parameters are Biochemical Oxygen Demand (BOD5), Chemical Oxygen Demand (COD), and Total Suspended Solids (TSS). The treatment target is BOD5, COD, and TSS reduction. Typical wastewater parameters at the wastewater treatment plant at MDW&S textile and garments factory are BOD5 and COD. The treatment target is to reduce BOD5 and COD. The manuscript further evaluates a design approach of the three municipal wastewater treatment plants in the city and the wastewater treatment plant at Mapeto David Whitehead & Sons (MDW&S) textile and garments factory. This evaluation utilises case-based design and case-based reasoning principles in the ED-WAVE tool to determine if there is potential for the tool in Blantyre. The manuscript finally evaluates the technology selection process for appropriate wastewater treatment systems for the city of Blantyre. The criteria for selection of appropriate wastewater treatment systems are discussed. Decision support tools and the decision tree making process for technology selection are also discussed. Based on the treatment targets and design criteria at the eight cases evaluated in this manuscript in reference to similar cases in the ED-WAVE tool, this work confirms the practical use of case-based design and case-based reasoning principles in the ED-WAVE tool in the design and evaluation of wastewater treatment 6 systems in sub-Sahara Africa, using Blantyre, Malawi, as the case study area. After encountering a new situation, already collected decision scenarios (cases) are invoked and modified in order to arrive at a particular design alternative. What is necessary, however, is to appropriately modify the case arrived at through the Case Study Manager in order to come up with a design appropriate to the local situation taking into account technical, socio-economic and environmental aspects. This work provides a training system for conceptual design and evaluation for wastewater treatment.
Resumo:
The potential for enhancing the energy efficiency of industrial pumping processes is estimated to be in some cases up to 50 %. One way to define further this potential is to implement techniques in accordance to definition of best available techniques in pumping applications. These techniques are divided into three main categories: Design, control method & maintenance and distribution system. In the theory part of this thesis first the definition of best available techniques (BAT) and its applicability on pumping processes is issued. Next, the theory around pumping with different pump types is handled, the main stress being in centrifugal pumps. Other components needed in a pumping process are dealt by presenting different control methods, use of an electric motor, variable speed drive and the distribution system. Last part of the theory is about industrial pumping processes from water distribution, sewage water and power plant applications, some of which are used further on in the empirical part as example cases. For the empirical part of this study four case studies on typical pumping processes from older Master’s these were selected. Firstly the original results were analyzed by studying the distribution of energy consumption between different system components and using the definition of BAT in pumping, possible ways to improve energy efficiency were evaluated. The goal in this study was that by the achieved results it would be possible to identify the characteristic energy consumption of these and similar pumping processes. Through this data it would then be easier to focus energy efficiency actions where they might be the most applicable, both technically and economically.
Resumo:
Approximately a quarter of electrical power consumption in pulp and paper industry is used in different pumping systems. Therefore, improving pumping system efficiency is a considerable way to reduce energy consumption in different processes. Pumping of wood pulp in different consistencies is common in pulp and paper industry. Earlier, centrifugal pumps were used to pump pulp only at low consistencies, but development of MC technology has made it possible to pump medium consistency pulp. Pulp is a non-Newtonian fluid, which flow characteristics are significantly different than what of water. In this thesis is examined the energy efficiency of pumping medium consistency pulp with centrifugal pump. The factors effecting the pumping of MC pulp are presented and through case study is examined the energy efficiency of pumping in practice. With data obtained from the case study are evaluated the effects of pump rotational speed and pulp consistency on energy efficiency. Additionally, losses caused by control valve and validity of affinity laws in pulp pumping are evaluated. The results of this study can be used for demonstrating the energy consumption of MC pumping processes and finding ways to improve energy efficiency in these processes.
Resumo:
Työn tavoitteena oli selvittää liikennebiokaasuntuotannon ja käytön vaikutus liikenteen ulkoi-siin kustannuksiin Pohjois-Karjalassa. Biokaasua tuotetaan Joensuussa Kuhasalon jäteveden-puhdistamolla sekä Kontiosuon jäteasemalla, Kiteellä biokaasua tuotetaan BioKympin yh-teismädätyslaitoksessa. Lisäksi laskennassa huomioitiin yhden maatilakokoluokan biokaasun-tuotanto. Työssä selvitettiin kaksi skenaariota liikennebiokaasun tuotantomääräksi vuodelle 2015. Liikennebiokaasua voitaisiin tuottaa optimiskenaarion mukaan 3 426 MWh ja maksimi-tuotantoskenaarion mukaan 21 532 MWh. Liikennebiokaasun käytön vaikutukset liikenteen päästöihin laskettiin vuodelle 2015 ja vuo-delle 2020, jolloin liikennebiokaasua käytettäisiin 10 % liikenteen energiantarpeesta Pohjois-Karjalassa. Hiilidioksidipäästöt vähenevät vuoden 2020 tilanteessa samassa suhteessa kuin liikennebiokaasu korvaa fossiilisia polttoaineita. Muista päästöistä merkittävimmät päästövä-hennykset saatiin kun vuoden 2010 dieselautot muutettaisiin biokaasuautoiksi, tällöin hiuk-kaspäästöt alenisivat jopa 18 % vuoden 2010 päästöistä. Lisäksi selvitettiin liikenteen päästöjen pienenemisen vaikutus liikenteen aiheuttamiin ulkoisiin kustannuksiin. Laskettavat ulkoiset kustannukset olivat ilmastonmuutos, pakokaasupäästöt sekä energiariippuvuus. Pakokaasupäästöjen aiheuttamat ulkoiset kustannukset olivat vuonna 2010 noin 7 miljoonaa euroa. Liikennebiokaasua käyttävästä ajoneuvotyypistä riippuen ulkoiset kustannukset laskevat vuoden 2020 tilanteessa 10–16 % vuoden 2010 kustannuksista. Ilmastonmuutoksen ulkoiset kustannukset vuodelle 2010 olivat 9,5 miljoonaa euroa. Biokaasun käytön avulla kustannuksissa voitaisiin säästää 910 000 euroa vuonna 2020. Ener-giariippuvuuden hinta öljynkäytöstä oli vuonna 2010 noin 4,2 miljoonaa euroa ja vuonna 2020 kustannukset voisivat laskea 450 000 euroa.
Resumo:
Pumping systems account for over 20 % of all electricity consumption in European industry. Optimization and correct design of such systems is important and there is a reasonable amount of unrealized energy saving potential in old pumping systems. The energy efficiency and therefore also the energy consumption of a pumping system heavily depends on the correct dimensioning and selection of devices. In this work, a graphical optimization tool for pumping systems is developed in Matlab programming language. The tool selects optimal pump, electrical motor and frequency converter for existing pumping process and calculates the life cycle costs of the whole system. The tool could be used as an aid when choosing the machinery and to analyze the energy consumption of existing systems. Results given by the tool are compared to the results of laboratory tests. The selection of pump and motor works reasonably well, but the frequency converter selection still needs development
Resumo:
Operation of pulp and paper mills generates waste including wastewater treatment sludge and deinking sludge. Both sludge types are generated in large amounts and are mainly disposed of in landfills in the Leningrad Region resulting in environmental degradation. The thesis was aimed at seeking new sustainable ways of sludge utilization. Two paper mills operating in the Leningrad Region and landfilling their sludge were identified: “SCA Hygiene Products Russia” and “Knauf”. The former generates 150 t/day of deinking sludge, the latter – 145 t/day of secondary sludge. Chemical analyses of deinking sludge were performed to assess applicability of sludge in construction materials production processes. Higher heating value on dry basis of both sludge types was determined to evaluate energy potential of sludge generated in the Leningrad Region. Total energy output from sludge incineration was calculated. Deinking sludge could be utilized in the production process of “LSR-Cement” or “Slantsy Cement Plant Cesla” factories, and “Pobeda” and “Nikolsky” brick mills without exceeding current sludge management costs.
Resumo:
The pumping processes requiring wide range of flow are often equipped with parallelconnected centrifugal pumps. In parallel pumping systems, the use of variable speed control allows that the required output for the process can be delivered with a varying number of operated pump units and selected rotational speed references. However, the optimization of the parallel-connected rotational speed controlled pump units often requires adaptive modelling of both parallel pump characteristics and the surrounding system in varying operation conditions. The available information required for the system modelling in typical parallel pumping applications such as waste water treatment and various cooling and water delivery pumping tasks can be limited, and the lack of real-time operation point monitoring often sets limits for accurate energy efficiency optimization. Hence, alternatives for easily implementable control strategies which can be adopted with minimum system data are necessary. This doctoral thesis concentrates on the methods that allow the energy efficient use of variable speed controlled parallel pumps in system scenarios in which the parallel pump units consist of a centrifugal pump, an electric motor, and a frequency converter. Firstly, the suitable operation conditions for variable speed controlled parallel pumps are studied. Secondly, methods for determining the output of each parallel pump unit using characteristic curve-based operation point estimation with frequency converter are discussed. Thirdly, the implementation of the control strategy based on real-time pump operation point estimation and sub-optimization of each parallel pump unit is studied. The findings of the thesis support the idea that the energy efficiency of the pumping can be increased without the installation of new, more efficient components in the systems by simply adopting suitable control strategies. An easily implementable and adaptive control strategy for variable speed controlled parallel pumping systems can be created by utilizing the pump operation point estimation available in modern frequency converters. Hence, additional real-time flow metering, start-up measurements, and detailed system model are unnecessary, and the pumping task can be fulfilled by determining a speed reference for each parallel-pump unit which suggests the energy efficient operation of the pumping system.
Resumo:
In this report, information is published concerning Russian water and wastewater treatment plants. The information is based on a questionnaire sent to 70 water and wastewater treatment plants in 2012-2013. The questionnaire was prepared by the International Advanced Water Technologies Centre (IAWTC) and Lahti Development Company (LADEC). The questions dealt with an assessment of the present state, the need for changes, renovation, investments, and how to improve the efficiency of the operation by training and investments. A significant need to renew the old pipelines, constructions, and processes was clearly evident. The aggregated answers can be utilized in Russia as internal benchmarking in order to arrange training and plant visits, which were requested in many of the answers. Sharing this open report with the respondents can aid networking and awareness of HELCOM requirements which relate to waste water treatment plants discharging their waste water directly or indirectly into the Baltic Sea. The aim of this report is to provide information for Finnish small and medium size companies (SMEs) as regards possible water related exportation to different parts of Russia.
Resumo:
Pumping systems account for up to 22 % of the energy consumed by electrical motors in European industry. Many studies have shown that there is also a lot of potential for energy savings in these systems with the improvement of devices, flow control or surrounding sys-tem. The best method for more energy efficient pumping has to be found for each system separately. This thesis studies how energy saving potential in reservoir pumping system is affected by surrounding variables, such as the static head variation and friction factor. The objective is to create generally applicable graphs to quickly compare methods for reducing pumping system’s energy costs. The gained results are several graphs showcasing how the chosen variables affect energy saving potential of the pumping system in one specific case. To judge if these graphs are generally applicable, more testing with different pumps and environments are required.
Resumo:
The conventional activated sludge processes (CAS) for the treatment of municipal wastewater are going to be outdated gradually due to more stringent environmental protection laws and regulations. The Membrane bioreactors (MBRs) are the most promising modern technology widely accepted in the world of wastewater treatment due to their highly pronounced features such as high quality effluent, less foot print and working under high MLSS concentration. This research project was carried out to investigate the feasibility and effectiveness of MBR technology compare to the CAS process based on the scientific facts and results. The pilot scale MBR pilot plant was run for more than 150 days and the analysis results were evaluated. The prime focus of the project was to evaluate the correlation of permeate flux under different operating MLSS concentrations. The permeate flux was found almost constant regardless of variations in MLSS concentrations. The removal of micropollutant such as heavy metals, PCPPs, PFCs, steroidal hormones was also studied. The micropollutant removal performance of MBR process was found relatively effective than CAS process. Furthermore, the compatibility of submerged membranes within the bioreactor had truly reduced the process footprint.