21 resultados para vocabulary learning


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tämän diplomityön tavoitteena on kuvata tiedonkulkua projektiliiketoimintaa harjoittavassa yrityksessä sekä analysoida kuvausta määrittäen mahdolliset kehityskohdat. Työssätuotetut kuvaukset ja kehityskohtien määrittäminen toimivat pohjana yrityksen kehittäessä projektien hallintaansa tulevaisuudessa. Työssä valitaan tietojohtamisen näkökulma sopivaksi lähestymistavaksi yrityksen toiminnananalysointiin. Haastatteluin kerätyn tutkimusmateriaalin perusteella luodaan prosessikuvaukset jotka mallintavat tietovirtoja yrityksen projektien aikana tapahtuvien prosessien välillä. Kuvausta peilataan tietämyksen luomisen sekä projektien tietojohtamisen teoriaan ja määritetään kehityskohteita. Kehityskohteiden määrittämisen lisäksi ehdotetaan mahdollisia toimenpiteitä tiedon ja tietämyksen hallinnan kehittämiseksi. Kokemusten ja opittujen asioiden sekäpalautteen kerääminen projektien aikana sekä niiden jälkeen havaittiin tärkeimmäksi kehityskohdaksi. Näiden keräämisen voidaan todeta vaativan järjestelmällisyyttä jotta projektien onnistumiset sekä niissä saavutetut parannukset voidaan toistaa jatkossa ja virheet sekä epäonnistumiset sitä vastoin välttää.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tutkielman tavoite on tutkia kulttuurista, funktionaalista ja arvojen diversiteettiä, niiden suhdetta innovatiivisuuteen ja oppimiseen sekä tarjota keinoja diversiteetin johtamiseen. Tämän lisäksi selvitetään linjaesimiesten haastattelujen kautta miten diversiteetti case -organisaatiossa tällä hetkellä koetaan. Organisaation diversiteetin tämänhetkisen tilan tunnistamisen kautta voidaan esittää parannusehdotuksia diversiteetin hallintaan. Tutkimus- ja tiedonkeruumenetelmänä käytetään kvalitatiivista focus group haastattelumenetelmää. Tutkimuksessa saatiin selkeä kuva kulttuurisen, funktionaalisen ja arvojen diversiteetin merkityksistä organisaation innovatiivisuudelle ja oppimiselle sekä löydettiin keinoja näiden diversiteetin tyyppien johtamiseen. Tutkimuksen tärkeä löydös on se, että diversiteetti vaikuttaa positiivisesti organisaation innovatiivisuuteen kun sitä johdetaan tehokkaasti ja kun organisaatioympäristö tukee avointa keskustelua ja mielipiteiden jakamista. Case organisaation tämänhetkistä diversiteetin tilaa selvitettäessä havaittiin että ongelma organisaatiossa ei ole diversiteetin puute, vaan paremminkin se, ettei diversiteettia osata hyödyntää. Organisaatio ei tue erilaisten näkemysten ja mielipiteiden vapaata esittämistä jahyväksikäyttöä ja siksi diversiteetin hyödyntäminen on epätäydellistä. Haastatteluissa tärkeinä seikkoina diversiteetin hyödyntämisen parantamisessa nähtiin kulttuurin muuttaminen avoimempaan suuntaan ja johtajien esimiestaitojen parantaminen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis examines the history and evolution of information system process innovation (ISPI) processes (adoption, adaptation, and unlearning) within the information system development (ISD) work in an internal information system (IS) department and in two IS software house organisations in Finland over a 43-year time-period. The study offers insights into influential actors and their dependencies in deciding over ISPIs. The research usesa qualitative research approach, and the research methodology involves the description of the ISPI processes, how the actors searched for ISPIs, and how the relationships between the actors changed over time. The existing theories were evaluated using the conceptual models of the ISPI processes based on the innovationliterature in the IS area. The main focus of the study was to observe changes in the main ISPI processes over time. The main contribution of the thesis is a new theory. The term theory should be understood as 1) a new conceptual framework of the ISPI processes, 2) new ISPI concepts and categories, and the relationships between the ISPI concepts inside the ISPI processes. The study gives a comprehensive and systematic study on the history and evolution of the ISPI processes; reveals the factors that affected ISPI adoption; studies ISPI knowledge acquisition, information transfer, and adaptation mechanisms; and reveals the mechanismsaffecting ISPI unlearning; changes in the ISPI processes; and diverse actors involved in the processes. The results show that both the internal IS department and the two IS software houses sought opportunities to improve their technical skills and career paths and this created an innovative culture. When new technology generations come to the market the platform systems need to be renewed, and therefore the organisations invest in ISPIs in cycles. The extent of internal learning and experiments was higher than the external knowledge acquisition. Until the outsourcing event (1984) the decision-making was centralised and the internalIS department was very influential over ISPIs. After outsourcing, decision-making became distributed between the two IS software houses, the IS client, and itsinternal IT department. The IS client wanted to assure that information systemswould serve the business of the company and thus wanted to co-operate closely with the software organisations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main subject of this master's thesis was predicting diffusion of innovations. The prediction was done in a special case: product has been available in some countries, and based on its diffusion in those countries the prediction is done for other countries. The prediction was based on finding similar countries with Self-Organizing Map~(SOM), using parameters of countries. Parameters included various economical and social key figures. SOM was optimised for different products using two different methods: (a) by adding diffusion information of products to the country parameters, and (b) by weighting the country parameters based on their importance for the diffusion of different products. A novel method using Differential Evolution (DE) was developed to solve the latter, highly non-linear optimisation problem. Results were fairly good. The prediction method seems to be on a solid theoretical foundation. The results based on country data were good. Instead, optimisation for different products did not generally offer clear benefit, but in some cases the improvement was clearly noticeable. The weights found for the parameters of the countries with the developed SOM optimisation method were interesting, and most of them could be explained by properties of the products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent advances in machine learning methods enable increasingly the automatic construction of various types of computer assisted methods that have been difficult or laborious to program by human experts. The tasks for which this kind of tools are needed arise in many areas, here especially in the fields of bioinformatics and natural language processing. The machine learning methods may not work satisfactorily if they are not appropriately tailored to the task in question. However, their learning performance can often be improved by taking advantage of deeper insight of the application domain or the learning problem at hand. This thesis considers developing kernel-based learning algorithms incorporating this kind of prior knowledge of the task in question in an advantageous way. Moreover, computationally efficient algorithms for training the learning machines for specific tasks are presented. In the context of kernel-based learning methods, the incorporation of prior knowledge is often done by designing appropriate kernel functions. Another well-known way is to develop cost functions that fit to the task under consideration. For disambiguation tasks in natural language, we develop kernel functions that take account of the positional information and the mutual similarities of words. It is shown that the use of this information significantly improves the disambiguation performance of the learning machine. Further, we design a new cost function that is better suitable for the task of information retrieval and for more general ranking problems than the cost functions designed for regression and classification. We also consider other applications of the kernel-based learning algorithms such as text categorization, and pattern recognition in differential display. We develop computationally efficient algorithms for training the considered learning machines with the proposed kernel functions. We also design a fast cross-validation algorithm for regularized least-squares type of learning algorithm. Further, an efficient version of the regularized least-squares algorithm that can be used together with the new cost function for preference learning and ranking tasks is proposed. In summary, we demonstrate that the incorporation of prior knowledge is possible and beneficial, and novel advanced kernels and cost functions can be used in algorithms efficiently.