26 resultados para supportive learning environments


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The focus of the present work was on 10- to 12-year-old elementary school students’ conceptual learning outcomes in science in two specific inquiry-learning environments, laboratory and simulation. The main aim was to examine if it would be more beneficial to combine than contrast simulation and laboratory activities in science teaching. It was argued that the status quo where laboratories and simulations are seen as alternative or competing methods in science teaching is hardly an optimal solution to promote students’ learning and understanding in various science domains. It was hypothesized that it would make more sense and be more productive to combine laboratories and simulations. Several explanations and examples were provided to back up the hypothesis. In order to test whether learning with the combination of laboratory and simulation activities can result in better conceptual understanding in science than learning with laboratory or simulation activities alone, two experiments were conducted in the domain of electricity. In these experiments students constructed and studied electrical circuits in three different learning environments: laboratory (real circuits), simulation (virtual circuits), and simulation-laboratory combination (real and virtual circuits were used simultaneously). In order to measure and compare how these environments affected students’ conceptual understanding of circuits, a subject knowledge assessment questionnaire was administered before and after the experimentation. The results of the experiments were presented in four empirical studies. Three of the studies focused on learning outcomes between the conditions and one on learning processes. Study I analyzed learning outcomes from experiment I. The aim of the study was to investigate if it would be more beneficial to combine simulation and laboratory activities than to use them separately in teaching the concepts of simple electricity. Matched-trios were created based on the pre-test results of 66 elementary school students and divided randomly into a laboratory (real circuits), simulation (virtual circuits) and simulation-laboratory combination (real and virtual circuits simultaneously) conditions. In each condition students had 90 minutes to construct and study various circuits. The results showed that studying electrical circuits in the simulation–laboratory combination environment improved students’ conceptual understanding more than studying circuits in simulation and laboratory environments alone. Although there were no statistical differences between simulation and laboratory environments, the learning effect was more pronounced in the simulation condition where the students made clear progress during the intervention, whereas in the laboratory condition students’ conceptual understanding remained at an elementary level after the intervention. Study II analyzed learning outcomes from experiment II. The aim of the study was to investigate if and how learning outcomes in simulation and simulation-laboratory combination environments are mediated by implicit (only procedural guidance) and explicit (more structure and guidance for the discovery process) instruction in the context of simple DC circuits. Matched-quartets were created based on the pre-test results of 50 elementary school students and divided randomly into a simulation implicit (SI), simulation explicit (SE), combination implicit (CI) and combination explicit (CE) conditions. The results showed that when the students were working with the simulation alone, they were able to gain significantly greater amount of subject knowledge when they received metacognitive support (explicit instruction; SE) for the discovery process than when they received only procedural guidance (implicit instruction: SI). However, this additional scaffolding was not enough to reach the level of the students in the combination environment (CI and CE). A surprising finding in Study II was that instructional support had a different effect in the combination environment than in the simulation environment. In the combination environment explicit instruction (CE) did not seem to elicit much additional gain for students’ understanding of electric circuits compared to implicit instruction (CI). Instead, explicit instruction slowed down the inquiry process substantially in the combination environment. Study III analyzed from video data learning processes of those 50 students that participated in experiment II (cf. Study II above). The focus was on three specific learning processes: cognitive conflicts, self-explanations, and analogical encodings. The aim of the study was to find out possible explanations for the success of the combination condition in Experiments I and II. The video data provided clear evidence about the benefits of studying with the real and virtual circuits simultaneously (the combination conditions). Mostly the representations complemented each other, that is, one representation helped students to interpret and understand the outcomes they received from the other representation. However, there were also instances in which analogical encoding took place, that is, situations in which the slightly discrepant results between the representations ‘forced’ students to focus on those features that could be generalised across the two representations. No statistical differences were found in the amount of experienced cognitive conflicts and self-explanations between simulation and combination conditions, though in self-explanations there was a nascent trend in favour of the combination. There was also a clear tendency suggesting that explicit guidance increased the amount of self-explanations. Overall, the amount of cognitive conflicts and self-explanations was very low. The aim of the Study IV was twofold: the main aim was to provide an aggregated overview of the learning outcomes of experiments I and II; the secondary aim was to explore the relationship between the learning environments and students’ prior domain knowledge (low and high) in the experiments. Aggregated results of experiments I & II showed that on average, 91% of the students in the combination environment scored above the average of the laboratory environment, and 76% of them scored also above the average of the simulation environment. Seventy percent of the students in the simulation environment scored above the average of the laboratory environment. The results further showed that overall students seemed to benefit from combining simulations and laboratories regardless of their level of prior knowledge, that is, students with either low or high prior knowledge who studied circuits in the combination environment outperformed their counterparts who studied in the laboratory or simulation environment alone. The effect seemed to be slightly bigger among the students with low prior knowledge. However, more detailed inspection of the results showed that there were considerable differences between the experiments regarding how students with low and high prior knowledge benefitted from the combination: in Experiment I, especially students with low prior knowledge benefitted from the combination as compared to those students that used only the simulation, whereas in Experiment II, only students with high prior knowledge seemed to benefit from the combination relative to the simulation group. Regarding the differences between simulation and laboratory groups, the benefits of using a simulation seemed to be slightly higher among students with high prior knowledge. The results of the four empirical studies support the hypothesis concerning the benefits of using simulation along with laboratory activities to promote students’ conceptual understanding of electricity. It can be concluded that when teaching students about electricity, the students can gain better understanding when they have an opportunity to use the simulation and the real circuits in parallel than if they have only the real circuits or only a computer simulation available, even when the use of the simulation is supported with the explicit instruction. The outcomes of the empirical studies can be considered as the first unambiguous evidence on the (additional) benefits of combining laboratory and simulation activities in science education as compared to learning with laboratories and simulations alone.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tässä vertailevassa kansainvälisessä tapaustutkimuksessa tarkasteltiin kuusivuotiaiden matematiikan tuntien opetus–oppimis -vuorovaikutusta ja lukukäsitteen osaamista Suomen, Englannin ja Ruotsin toiminta- ja oppimisympäristöissä. Toteutuneita opetus–oppimis -prosesseja verrattiin opetussuunnitelmien yleisiin- ja matematiikan tavoitteisiin sekä lukukäsitteen osaamistasoon. Empiirinen tutkimusaineisto sisälsi lasten (N=99) lukukäsitteen osaamistason yksilötestauksen ja laadullisen analyysin yhteensä seitsemän viikon matematiikan tuntien (880 minuutin) videoidusta opetus – oppimis -vuorovaikutuksesta. Minuutin analyysiyksikköina tarkasteltuna kuusivuotiaiden tutkimusviikon matematiikan tuntien opetus–oppimis -vuorovaikutuksesta lähes puolet ilmensi opettajalähtöisyyttä, kolmannes oppijalähtöisyyttä ja lähes viidennes ilmensi jaettua vuorovaikutusta. Kun tutkimusviikon matematiikan opetusta tarkasteltiin merkityksellisten vuorovaikutuskokonaisuuksien, episodien luokittelun pohjalta havaittiin, että kaikista viikon matematiikkaepisodeista (N=371) yli puolet edusti opettajalähtöisyyttä ja kolmannes edusti opettajalähtöisen ja jaetun vuorovaikutuksen yhdistelmää. Episodien keskimääräinen kesto oli noin kaksi minuuttia tässä tutkimuksessa. Tuloksissa ilmeni ryhmien välisiä eroja opetus–oppimis -vuorovaikutuksen ominaisuuksissa sekä erityyppisiä matematiikan tuntien rakennemalleja ja lukukäsitteen osaamistasoeroja. Monipuolinen ja muita näytteitä enemmän jaettua vuorovaikutusta edustava oppimisympäristö, oli tässä aineistossa yhteydessä keskiarvoa korkeampaan lukukäsitteen osaamistasoon. Korostetun opettajalähtöinen oppimisympäristö oli yhteydessä keskimääräiseen lukukäsitteen osaamistasoon. Muita tutkimuskohteita oppijalähtöisempi oppimisympäristö oli yhteydessä keskimääräisistä alempaan lukukäsitteen osaamistasoon. Tutkimustulosten perusteella tarkentuu kuva erilaisista opetus–oppimis -prosessin osatekijöistä, joita voidaan mahdollisesti soveltaa eri oppiaineisiin vastaavanlaisissa formaaleissa oppimisympäristöissä.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Massive Open Online Courses have been in the center of attention in the recent years. However, the main problem of all online learning environments is their lack of personalization according to the learners’ knowledge, learning styles and other learning preferences. This research explores the parameters and features used for personalization in the literature and based on them, evaluates to see how well the current MOOC platforms have been personalized. Then, proposes a design framework for personalization of MOOC platforms that fulfills most of the personalization parameters in the literature including the learning style as well as personalization features. The result of an assessment made for the proposed design framework shows that the framework well supports personalization of MOOCs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Research about music instrument teacher education is scattered and fairly recent, especially in the European context. The purpose of this study was to explore two cases of piano teacher education programs at higher music education institutions, one in Finland, and one in Germany, to gain insights into the preparation of piano teachers for their professional working life. The aim was to identify issues for consideration in curriculum development of piano teacher education to enhance the teaching and learning of piano playing, and to ultimately increase musical practice and engagement among young learners. Nine semi-structured interviews with piano teacher educators, heads of program, other lecturers within the program, and student piano teachers in both cases were analyzed using applied thematic analysis. Three main themes with subcategories emerged: (1) the organization of the piano teacher education program, such as the structure, the content, the learning environments provided, and the development mechanisms of the program; (2) the views on the piano teacher profession, the working environment and resulting requirements, including further education during professional life; and (3) the professional skills and teacher identity development of student teachers. While the supposed working environments and requirements of future piano teachers, the student teachers' development characteristics, and the content were found reasonably concurrent in both cases, the structure of the teacher education program, and the organization of learning environments presented notable differences. While the complete teacher qualification in the Finnish case was offered as option in the Bachelor and Master of Music program within the piano department, the German case offered a separate program for music instrument educators. Other main differences concerned the organizations of practical teaching experiences, and the linking of practical with theoretical pedagogy. Conviction and enthusiasm for improving piano and other music instrument teacher education seemed remarkable. These improvements could include the development of a comprehensive teacher education pedagogy for music instrument teacher educators, intensified cross-linking within and of higher music education institutions in local contexts, and the expansion of professional development opportunities.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this study was to gain a deeper understanding of the learning experiences of upper secondary school students in a virtual learning environment. The focus of the study is younger students aged 16–18. Virtual learning environments are defined as collaborative, interactive and communicative digital environments. The main research question was to distinguish the meaning of learning given by the participants. Did the participants perceive learning potential in the virtual learning environment, and if so, what signifies learning potential? Sub-questions were: What enhances learning? What might inhibit learning in a distance course? How do the participants relate to their role as distant learners? Four upper secondary schools in Finland took part in the study. Thirteen upper secondary students were interviewed after a distance course in social studies. During the analysis, four main categories were identified: responsibility, freedom, time and communication. A constructivist approach to learning was adopted while analysing the interviews, and the categories were understood through cognitive, affective and social dimensions of learning. The implications of the study are that a student-centred pedagogy and a social constructivist course design have the potential to motivate students to interact to learn, while the software, such as Second Life, Google+ and Wikibooks, offers them the possibility to do so. The study introduces an empirically supported concept, virtual learning. Virtual learning assumes an active learner who manages different learning spaces while communicating with people and metacognitively assessing the learning process. At the same time, students get used to the virtual and everchanging nature of information and knowledge.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The portfolio as a means of demonstrating personal skills has lately been gaining prominence among technology students. This is partially due to the introduction of electronic portfolios, or e-portfolios. As platforms for e-portfolio management with different approaches have been introduced, the learning cycle, traditional portfolio pedagogy, and learner centricity have sometimes been forgotten, and as a result, the tools have been used for the most part as data depositories. The purpose of this thesis is to show how the construction of e-portfolios of IT students can be supported by institutions through the usage of different tools that relate to study advising, teaching, and learning. The construction process is presented as a cycle based on learning theories. Actions related to the various phases of the e-portfolio construction process are supported by the implementation of software applications. To maximize learner-centricity and minimize the intervention of the institution, the evaluated and controlled actions for these practices can be separated from the e-portfolios, leaving the construction of the e-portfolio to students. The main contributions of this thesis are the implemented applications, which can be considered to support the e-portfolio construction by assisting in planning, organizing, and reflecting activities. Eventually, this supports the students in their construction of better and more extensive e-portfolios. The implemented tools include 1) JobSkillSearcher to help students’ recognition of the demands of the ICT industry regarding skills, 2) WebTUTOR to support students’ personal study planning, 3) Learning Styles to determine students' learning styles, and 4) MyPeerReview to provide a platform on which to carry out anonymous peer review processes in courses. The most visible outcome concerning the e-portfolio is its representation, meaning that one can use it to demonstrate personal achievements at the time of seeking a job and gaining employment. Testing the tools and the selected open-source e-portfolio application indicates that the degree of richness of e-portfolio content can be increased by using the implemented applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Communication, the flow of ideas and information between individuals in a social context, is the heart of educational experience. Constructivism and constructivist theories form the foundation for the collaborative learning processes of creating and sharing meaning in online educational contexts. The Learning and Collaboration in Technology-enhanced Contexts (LeCoTec) course comprised of 66 participants drawn from four European universities (Oulu, Turku, Ghent and Ramon Llull). These participants were split into 15 groups with the express aim of learning about computer-supported collaborative learning (CSCL). The Community of Inquiry model (social, cognitive and teaching presences) provided the content and tools for learning and researching the collaborative interactions in this environment. The sampled comments from the collaborative phase were collected and analyzed at chain-level and group-level, with the aim of identifying the various message types that sustained high learning outcomes. Furthermore, the Social Network Analysis helped to view the density of whole group interactions, as well as the popular and active members within the highly collaborating groups. It was observed that long chains occur in groups having high quality outcomes. These chains were also characterized by Social, Interactivity, Administrative and Content comment-types. In addition, high outcomes were realized from the high interactive cases and high-density groups. In low interactive groups, commenting patterned around the one or two central group members. In conclusion, future online environments should support high-order learning and develop greater metacognition and self-regulation. Moreover, such an environment, with a wide variety of problem solving tools, would enhance interactivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

International partnership has received growing interest in the literature during the past decades due to globalization, increased technological approaches and rapid changes in competitive environments. The study specifically determines the support provided by international partners on promotion of e-learning in East Africa, assess the motives of partner selection criteria, the determinants of selecting partners, partner models and partner competence of e-learning provider. The study also evaluates obstacles of e-learning partnering strategy in East Africa learning institutions. The research adopts a descriptive survey design. Target population involved East Africa learning institutions with a list of potential institutions generated from the Ministry of Higher Education database. Through a targeted reduction of the initial database, consisting of all learning institutions, both public and private, the study created a target sample base of 200 learning institutions. Structured questionnaires scheduled were used to collect primary data. Study findings showed the approach way East African communities in selecting their e-learning partners depend on international reputation of partners, partner with ability to negotiate with foreign governments, partner with international and local experiences, nationality of foreign partner and partners with local market knowledge.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditionally metacognition has been theorised, methodologically studied and empirically tested from the standpoint mainly of individuals and their learning contexts. In this dissertation the emergence of metacognition is analysed more broadly. The aim of the dissertation was to explore socially shared metacognitive regulation (SSMR) as part of collaborative learning processes taking place in student dyads and small learning groups. The specific aims were to extend the concept of individual metacognition to SSMR, to develop methods to capture and analyse SSMR and to validate the usefulness of the concept of SSMR in two different learning contexts; in face-to-face student dyads solving mathematical word problems and also in small groups taking part in inquiry-based science learning in an asynchronous computer-supported collaborative learning (CSCL) environment. This dissertation is comprised of four studies. In Study I, the main aim was to explore if and how metacognition emerges during problem solving in student dyads and then to develop a method for analysing the social level of awareness, monitoring, and regulatory processes emerging during the problem solving. Two dyads comprised of 10-year-old students who were high-achieving especially in mathematical word problem solving and reading comprehension were involved in the study. An in-depth case analysis was conducted. Data consisted of over 16 (30–45 minutes) videotaped and transcribed face-to-face sessions. The dyads solved altogether 151 mathematical word problems of different difficulty levels in a game-format learning environment. The interaction flowchart was used in the analysis to uncover socially shared metacognition. Interviews (also stimulated recall interviews) were conducted in order to obtain further information about socially shared metacognition. The findings showed the emergence of metacognition in a collaborative learning context in a way that cannot solely be explained by individual conception. The concept of socially-shared metacognition (SSMR) was proposed. The results highlighted the emergence of socially shared metacognition specifically in problems where dyads encountered challenges. Small verbal and nonverbal signals between students also triggered the emergence of socially shared metacognition. Additionally, one dyad implemented a system whereby they shared metacognitive regulation based on their strengths in learning. Overall, the findings suggested that in order to discover patterns of socially shared metacognition, it is important to investigate metacognition over time. However, it was concluded that more research on socially shared metacognition, from larger data sets, is needed. These findings formed the basis of the second study. In Study II, the specific aim was to investigate whether socially shared metacognition can be reliably identified from a large dataset of collaborative face-to-face mathematical word problem solving sessions by student dyads. We specifically examined different difficulty levels of tasks as well as the function and focus of socially shared metacognition. Furthermore, the presence of observable metacognitive experiences at the beginning of socially shared metacognition was explored. Four dyads participated in the study. Each dyad was comprised of high-achieving 10-year-old students, ranked in the top 11% of their fourth grade peers (n=393). Dyads were from the same data set as in Study I. The dyads worked face-to-face in a computer-supported, game-format learning environment. Problem-solving processes for 251 tasks at three difficulty levels taking place during 56 (30–45 minutes) lessons were video-taped and analysed. Baseline data for this study were 14 675 turns of transcribed verbal and nonverbal behaviours observed in four study dyads. The micro-level analysis illustrated how participants moved between different channels of communication (individual and interpersonal). The unit of analysis was a set of turns, referred to as an ‘episode’. The results indicated that socially shared metacognition and its function and focus, as well as the appearance of metacognitive experiences can be defined in a reliable way from a larger data set by independent coders. A comparison of the different difficulty levels of the problems suggested that in order to trigger socially shared metacognition in small groups, the problems should be more difficult, as opposed to moderately difficult or easy. Although socially shared metacognition was found in collaborative face-to-face problem solving among high-achieving student dyads, more research is needed in different contexts. This consideration created the basis of the research on socially shared metacognition in Studies III and IV. In Study III, the aim was to expand the research on SSMR from face-to-face mathematical problem solving in student dyads to inquiry-based science learning among small groups in an asynchronous computer-supported collaborative learning (CSCL) environment. The specific aims were to investigate SSMR’s evolvement and functions in a CSCL environment and to explore how SSMR emerges at different phases of the inquiry process. Finally, individual student participation in SSMR during the process was studied. An in-depth explanatory case study of one small group of four girls aged 12 years was carried out. The girls attended a class that has an entrance examination and conducts a language-enriched curriculum. The small group solved complex science problems in an asynchronous CSCL environment, participating in research-like processes of inquiry during 22 lessons (á 45–minute). Students’ network discussion were recorded in written notes (N=640) which were used as study data. A set of notes, referred to here as a ‘thread’, was used as the unit of analysis. The inter-coder agreement was regarded as substantial. The results indicated that SSMR emerges in a small group’s asynchronous CSCL inquiry process in the science domain. Hence, the results of Study III were in line with the previous Study I and Study II and revealed that metacognition cannot be reduced to the individual level alone. The findings also confirm that SSMR should be examined as a process, since SSMR can evolve during different phases and that different SSMR threads overlapped and intertwined. Although the classification of SSMR’s functions was applicable in the context of CSCL in a small group, the dominant function was different in the asynchronous CSCL inquiry in the small group in a science activity than in mathematical word problem solving among student dyads (Study II). Further, the use of different analytical methods provided complementary findings about students’ participation in SSMR. The findings suggest that it is not enough to code just a single written note or simply to examine who has the largest number of notes in the SSMR thread but also to examine the connections between the notes. As the findings of the present study are based on an in-depth analysis of a single small group, further cases were examined in Study IV, as well as looking at the SSMR’s focus, which was also studied in a face-to-face context. In Study IV, the general aim was to investigate the emergence of SSMR with a larger data set from an asynchronous CSCL inquiry process in small student groups carrying out science activities. The specific aims were to study the emergence of SSMR in the different phases of the process, students’ participation in SSMR, and the relation of SSMR’s focus to the quality of outcomes, which was not explored in previous studies. The participants were 12-year-old students from the same class as in Study III. Five small groups consisting of four students and one of five students (N=25) were involved in the study. The small groups solved ill-defined science problems in an asynchronous CSCL environment, participating in research-like processes of inquiry over a total period of 22 hours. Written notes (N=4088) detailed the network discussions of the small groups and these constituted the study data. With these notes, SSMR threads were explored. As in Study III, the thread was used as the unit of analysis. In total, 332 notes were classified as forming 41 SSMR threads. Inter-coder agreement was assessed by three coders in the different phases of the analysis and found to be reliable. Multiple methods of analysis were used. Results showed that SSMR emerged in all the asynchronous CSCL inquiry processes in the small groups. However, the findings did not reveal any significantly changing trend in the emergence of SSMR during the process. As a main trend, the number of notes included in SSMR threads differed significantly in different phases of the process and small groups differed from each other. Although student participation was seen as highly dispersed between the students, there were differences between students and small groups. Furthermore, the findings indicated that the amount of SSMR during the process or participation structure did not explain the differences in the quality of outcomes for the groups. Rather, when SSMRs were focused on understanding and procedural matters, it was associated with achieving high quality learning outcomes. In turn, when SSMRs were focused on incidental and procedural matters, it was associated with low level learning outcomes. Hence, the findings imply that the focus of any emerging SSMR is crucial to the quality of the learning outcomes. Moreover, the findings encourage the use of multiple research methods for studying SSMR. In total, the four studies convincingly indicate that a phenomenon of socially shared metacognitive regulation also exists. This means that it was possible to define the concept of SSMR theoretically, to investigate it methodologically and to validate it empirically in two different learning contexts across dyads and small groups. In-depth micro-level case analysis in Studies I and III showed the possibility to capture and analyse in detail SSMR during the collaborative process, while in Studies II and IV, the analysis validated the emergence of SSMR in larger data sets. Hence, validation was tested both between two environments and within the same environments with further cases. As a part of this dissertation, SSMR’s detailed functions and foci were revealed. Moreover, the findings showed the important role of observable metacognitive experiences as the starting point of SSMRs. It was apparent that problems dealt with by the groups should be rather difficult if SSMR is to be made clearly visible. Further, individual students’ participation was found to differ between students and groups. The multiple research methods employed revealed supplementary findings regarding SSMR. Finally, when SSMR was focused on understanding and procedural matters, this was seen to lead to higher quality learning outcomes. Socially shared metacognition regulation should therefore be taken into consideration in students’ collaborative learning at school similarly to how an individual’s metacognition is taken into account in individual learning.