54 resultados para light gauge cold-formed steel frame structures
Resumo:
Tämän tutkimuksen tavoite oli kaksijakoinen. Ensimmäisenä tavoitteena oli profiililiiketoiminnan tehostaminen tuoteportfoliota kehittämällä. Toisena ta-voitteena oli etsiä kannattavimpia asiakassegmenttejä. Työn pääajurina nähtiin kilpailukyky, keskeistä oli ymmärtää mistä kilpailukyky syntyy ja mikä on case-organisaation asema markkinoilla. Laajemmin tavoitteena oli päästä eroon teräsmarkkinoiden syklisyydestä ja pelkästään hintoihin perustuvasta liiketoiminnasta. Tutkimuksessa etsittiin case-organisaation ja kilpailijoiden vahvuuksia ja heikkouksia. Kilpailijoiden asema markkinoilla sekä uusien asiakassegmenttien kiinnostavuus selvitettiin kyselytutkimuksen sekä haastattelujen avulla. Kyselytutkimus toteutettiin avoimilla kysymyksillä varustetulla kyselylomakkeella. Vahvuuksien ja heikkouksien tunnistamisen lisäksi oli tärkeää ymmärtää mitä tekijöitä case-organisaation tulee hankkia tulevaisuuden kilpailukyvyn ylläpitämiseksi. Tutkimuksessa tultiin johtopäätökseen, että paras keino vastata markkinoilla vallitsevaa kilpailuun on keskittyä tuoteportfoliossa avoprofiileihin, joiden seinämäpaksuus on yli 8 mm. Lisäksi heräsi tarve pohtia uuden järeän profilointilinjan hankintaa tulevaisuuden kilpailukyvyn ylläpitämiseksi. Potentiaalisimmiksi uusiksi asiakassegmenteiksi nähtiin nosto- ja siirtovälineteollisuus, infrastruktuuri- ja rakennusteollisuus sekä energiateollisuus. Työssä todettiin myös, että tulevaisuuden kilpailukyvyn ylläpitämiseksi on tuotetarjontaa monipuolistettava lisäämällä oheispalveluita, kuten asiakasvarastointia.
Resumo:
Inorganic pyrophosphatases (PPases) are essential enzymes for every living cell. PPases provide the necessary thermodynamic pull for many biosynthetic reactions by hydrolyzing pyrophosphate. There are two types of PPases: integral membrane-bound and soluble enzymes. The latter type is divided into two non-homologous protein families, I and II. Family I PPases are present in all kingdoms of life, whereas family II PPases are only found in prokaryotes, including archae. Family I PPases, particularly that from Saccharomyces cerevisiae, are among the most extensively characterized phosphoryl transfer enzymes. In the present study, we have solved the structures of wild-type and seven active site variants of S. cerevisiae PPase bound to its natural metal cofactor, magnesium ion. These structures have facilitated derivation of the complete enzyme reaction scheme for PPase, fulfilling structures of all the reaction intermediates. The main focus in this study was on a novel subfamily of family II PPases (CBSPPase) containing a large insert formed by two CBS domains and a DRTGG domain within the catalytic domain. The CBS domain (named after cystathionine beta-synthase in which it was initially identified) usually occurs as tandem pairs with two or four copies in many proteins in all kingdoms of life. The structure formed by a pair of CBS domains is also known as a Bateman domain. CBS domains function as regulatory units, with adenylate ligands as the main effectors. The DRTGG domain (designated based on its most conserved residues) occurs less frequently and only in prokaryotes. Often, the domain co-exists with CBS domains, but its function remains unknown. The key objective of the current study was to explore the structural rearrangements in the CBS domains induced by regulatory adenylate ligands and their functional consequences. Two CBS-PPases were investigated, one from Clostridium perfringens (cpCBS-PPase) containing both CBS and DRTGG domains in its regulatory region and the other from Moorella thermoacetica (mt CBS-PPase) lacking the DRTGG domain. We additionally constructed a separate regulatory region of cpCBS-PPase (cpCBS). Both full-length enzymes and cpCBS formed homodimers. Two structures of the regulatory region of cpCBS-PPase complexed with the inhibitor, AMP, and activator, diadenosine tetraphosphate, were solved. The structures were significantly different, providing information on the structural pathway from bound adenylates to the interface between the regulatory and catalytic parts. To our knowledge, these are the first reported structures of a regulated CBS enzyme, which reveal large conformational changes upon regulator binding. The activator-bound structure was more open, consistent with the different thermostabilities of the activator- and inhibitor-bound forms of cpCBS-PPase. The results of the functional studies on wild-type and variant CBS-PPases provide support for inferences made on the basis of structural analyses. Moreover, these findings indicate that CBS-PPase activity is highly sensitive to adenine nucleotide distribution between AMP, ADP and ATP, and hence to the energy level of the cell. CBS-PPase activity is markedly inhibited at low energy levels, allowing PPi energy to be used for cell survival instead of being converted into heat.
Resumo:
The building industry has a particular interest in using clinching as a joining method for frame constructions of light-frame housing. Normally many clinch joints are required in joining of frames.In order to maximise the strength of the complete assembly, each clinch joint must be as sound as possible. Experimental testing is the main means of optimising a particular clinch joint. This includes shear strength testing and visual observation of joint cross-sections. The manufacturers of clinching equipment normally perform such experimental trials. Finite element analysis can also be used to optimise the tool geometry and the process parameter, X, which represents the thickness of the base of the joint. However, such procedures require dedicated software, a skilled operator, and test specimens in order to verify the finite element model. In addition, when using current technology several hours' computing time may be necessary. The objective of the study was to develop a simple calculation procedure for rapidly establishing an optimum value for the parameter X for a given tool combination. It should be possible to use the procedure on a daily basis, without stringent demands on the skill of the operator or the equipment. It is also desirable that the procedure would significantly decrease thenumber of shear strength tests required for verification. The experimental workinvolved tests in order to obtain an understanding of the behaviour of the sheets during clinching. The most notable observation concerned the stage of the process in which the upper sheet was initially bent, after which the deformation mechanism changed to shearing and elongation. The amount of deformation was measured relative to the original location of the upper sheet, and characterised as the C-measure. By understanding in detail the behaviour of the upper sheet, it waspossible to estimate a bending line function for the surface of the upper sheet. A procedure was developed, which makes it possible to estimate the process parameter X for each tool combination with a fixed die. The procedure is based on equating the volume of material on the punch side with the volume of the die. Detailed information concerning the behaviour of material on the punch side is required, assuming that the volume of die does not change during the process. The procedure was applied to shear strength testing of a sample material. The sample material was continuously hot-dip zinc-coated high-strength constructional steel,with a nominal thickness of 1.0 mm. The minimum Rp0.2 proof stress was 637 N/mm2. Such material has not yet been used extensively in light-frame housing, and little has been published on clinching of the material. The performance of the material is therefore of particular interest. Companies that use clinching on a daily basis stand to gain the greatest benefit from the procedure. By understanding the behaviour of sheets in different cases, it is possible to use data at an early stage for adjusting and optimising the process. In particular, the functionality of common tools can be increased since it is possible to characterise the complete range of existing tools. The study increases and broadens the amount ofbasic information concerning the clinching process. New approaches and points of view are presented and used for generating new knowledge.
Resumo:
With an increasingly growing demand for natural resources, the Arctic region has become an attractive area, holding about 15% of world oil. Ice shrinkage caused by global warming encourages the development of offshore and ship-building sectors. Russia, as one of the leading oil and gas production countries is participating actively in cold resistant materials research, since half of its territory belongs to the Arctic environment, which held considerable stores of oil. Nowadays most Russian offshore platforms are located in the Sakhalin Island area, which geographically does not belong to the Arctic, but has com-parable environmental conditions. Russia recently has manufactured several offshore platforms. It became clear that further development of the Arctic off-shore structures with necessary reliability is highly depending on the materials employed. This work pursues the following objectives: to provide a comprehensive review on Russian metals used for Arctic offshore structures on the base of standards, books, journal articles and companies reports to overview various Arctic offshore structures and its structural characteristics briefly discuss materials testing methods for low temperatures Master`s thesis focuses on specifications and description of Russian metals which are already in use and can be used for Arctic offshore structures. Work overviews several groups of steel, such as low carbon, low alloy, chromium containing steels, stainless steels, aluminium and nanostructured steels. Materials under discussion are grouped based on the standards, for instance the work covers shipbuilding and structural steels at the different sections. This paper provides an overview of important Russian Arctic offshore projects built for use in Russia and ordered by foreign countries. Future trends in development of the Arctic materials are discussed. Based on the information provided in this Master`s thesis it is possible to learn about Russian metals used for ships and offshore platforms operated in the Arctic region. Paper can be used as the comprehensive review of current materials, such as various steels, aluminium and nanomaterials.
Resumo:
Weldability of powder bed fusion (PBF) fabricated components has come to discussion in past two years due to resent developments in the PBF technology and limited size of the machines used in the fabrication process. This study concentrated on effects of energy input of welding on mechanical properties and microstructural features of welds between PBF fabricated stainless steel 316L sheets and cold rolled sheet metal of same composition by the means of destructive testing and microscopic analysis. Optical fiber diameter, laser power and welding speed were varied during the experiments that were executed following one variable at a time (OVAT) method. One of the problems of welded PBF fabricated components has been lower elongations at break comparing to conventionally manufactured components. Decreasing energy input of the laser keyhole welding decreased elongations at break of the welded specimens. Ultimate tensile strengths were not affected significantly by the energy input of the welding, but fracturing of the specimens welded using high energy input occurred from the weld metal. Fracturing of the lower energy input welds occurred from the PBF fabricated base metal. Energy input was found to be critical factor for mechanical properties of the welds. Multioriented grain growth and formation of neck at fusion zone boundary on the cold rolled side of the weld was detected and suspected to be result from weld pool flows caused by differences in molten weld pool behaviour between the PBF fabricated and cold rolled sides of the welds.
Resumo:
Finnish design and consulting companies are delivering robust and cost-efficient steel structures solutions to a large number of manufacturing companies worldwide. Recently introduced EN 1090-2 standard obliges these companies to specify the execution class of steel structures for their customers. This however, requires clarifying, understanding and interpreting the sophisticated procedure of execution class assignment. The objective of this research is to provide a clear explanation and guidance through the process of execution class assignment for a given steel structure and to support the implementation of EN 1090-2 standard in Rejlers Oy, one of Finnish design and consulting companies. This objective is accomplished by creating a guideline for designers that elaborates on the four-step process of the execution class assignment for a steel structure or its part. Steps one to three define the consequence class (projected consequences of structure failure), the service category (hazards associated with the service use exploitation of steel structure) and the production category (manufacturing process peculiarities), based on the ductility class (capacity of structure to withstand deformations) and the behaviour factor (corresponds to structure seismic behaviour). The final step is the execution class assignment taking into account results of previous steps. Main research method is indepth literature review of European standards family for steel structures. Other research approach is a series of interviews of Rejlers Oy representatives and its clients, results of which have been used to evaluate the level of EN 1090-2 awareness. Rejlers Oy will use the developed novel coherent standard implementation guideline to improve its services and to obtain greater customer satisfaction.
Resumo:
Hitsattujen rakenteiden väsymiskestävyyttä pystytään parantamaan jälkikäsittelymenetelmillä, joistayksi, ultraäänikäsittely muokkaa hitsin geometriaa ja aiheuttaa puristusjäännösjännitystilan. Tässä tutkimuksessa verrataan kokeellisesti kuormaa kantamattoman hitsatun ja ui -käsitellyn rivan väsymislujuutta toisiinsa. Tutkimusohjelmaan kuuluu kahta teräslajia ja sekä vakio - että vaihtuva - amplitudista kuormitusta. Ultraäänikäsittelyllä saavutetaan väsymiskestoiän parantuminen vakio - ja vaihtuva - amplitudisella kuormituksella. Perusaineen lujuudella ei ole merkittää vaikutusta väsymislujuuteen kun liitos on hitsatussa tilassa. Tällöin väsymiskestävyyden määrää hitsin rajaviivan jännityskeskittymä. Ultraäänikäsitellyn hitsatunliitoksen väsymiskestävyys on suurempi korkeamman lujuuden omaavilla teräksillä. Tästä syystä korkealujuuksisten terästen käyttö ultraäänikäsiteltynä väsyttävästi kuormitetuissa kevytrakenteissa on perusteltua.
Resumo:
Työssä on tutkittu vetojännityskuormituksen alaisena olevien hitsattujen kuormaa kantamattomien X-liitosten hitsin paikallisen geometrian variaation vaikutusta väsymislujuuteen. Muuttujina olivat reunan pyöristyssäde, kylmäjuoksun suuruus ja kylkikulma. Geometristen muuttujien parametrinen riippuvuussuhde on analysoitu usealla elementtimallilla. Väsymistarkastelu on suoritettu käyttämällä lineaaris-elastista murtumismekaniikkaa (LEFM) tasovenymätilassa ja materiaalina terästä. Särönkasvun suunnan ennustamisessaon käytetty maksimipääjännityskriteeriä sekä jännitysintensiteettikertoimet on määritetty J-integraalilla. Särön ydintymisvaihetta ei ole otettu huomioon. Rakenteen on oletettu olevan hitsatussa tilassa ja jännitysheilahdus on kokonaan tehollinen. Särön kasvunopeuden ennustamiseen on käytetty Paris'n lakia. Väsymislujuustulokset on esitetty karakteristisina väsymisluokkina (FAT) ja sovitettu parametriseksi yhtälöksi. Lopuksi väsymisanalyysin ennustamia tuloksia on verrattu saatavilla oleviin väsytystestituloksiin.
Resumo:
The dynamical properties ofshaken granular materials are important in many industrial applications where the shaking is used to mix, segregate and transport them. In this work asystematic, large scale simulation study has been performed to investigate the rheology of dense granular media, in the presence of gas, in a three dimensional vertical cylinder filled with glass balls. The base wall of the cylinder is subjected to sinusoidal oscillation in the vertical direction. The viscoelastic behavior of glass balls during a collision, have been studied experimentally using a modified Newton's Cradle device. By analyzing the results of the measurements, using numerical model based on finite element method, the viscous damping coefficient was determinedfor the glass balls. To obtain detailed information about the interparticle interactions in a shaker, a simplified model for collision between particles of a granular material was proposed. In order to simulate the flow of surrounding gas, a formulation of the equations for fluid flow in a porous medium including particle forces was proposed. These equations are solved with Large Eddy Simulation (LES) technique using a subgrid-model originally proposed for compressible turbulent flows. For a pentagonal prism-shaped container under vertical vibrations, the results show that oscillon type structures were formed. Oscillons are highly localized particle-like excitations of the granular layer. This self-sustaining state was named by analogy with its closest large-scale analogy, the soliton, which was first documented by J.S. Russell in 1834. The results which has been reportedbyBordbar and Zamankhan(2005b)also show that slightly revised fluctuation-dissipation theorem might apply to shaken sand, which appears to be asystem far from equilibrium and could exhibit strong spatial and temporal variations in quantities such as density and local particle velocity. In this light, hydrodynamic type continuum equations were presented for describing the deformation and flow of dense gas-particle mixtures. The constitutive equation used for the stress tensor provides an effective viscosity with a liquid-like character at low shear rates and a gaseous-like behavior at high shear rates. The numerical solutions were obtained for the aforementioned hydrodynamic equations for predicting the flow dynamics ofdense mixture of gas and particles in vertical cylindrical containers. For a heptagonal prism shaped container under vertical vibrations, the model results were found to predict bubbling behavior analogous to those observed experimentally. This bubbling behavior may be explained by the unusual gas pressure distribution found in the bed. In addition, oscillon type structures were found to be formed using a vertically vibrated, pentagonal prism shaped container in agreement with computer simulation results. These observations suggest that the pressure distribution plays a key rolein deformation and flow of dense mixtures of gas and particles under vertical vibrations. The present models provide greater insight toward the explanation of poorly understood hydrodynamic phenomena in the field of granular flows and dense gas-particle mixtures. The models can be generalized to investigate the granular material-container wall interactions which would be an issue of high interests in the industrial applications. By following this approach ideal processing conditions and powder transport can be created in industrial systems.
Resumo:
It is commonly observed that complex fabricated structures subject tofatigue loading fail at the welded joints. Some problems can be corrected by proper detail design but fatigue performance can also be improved using post-weld improvement methods. In general, improvement methods can be divided into two main groups: weld geometry modification methods and residual stress modification methods. The former remove weld toe defects and/or reduce the stress concentrationwhile the latter introduce compressive stress fields in the area where fatigue cracks are likely to initiate. Ultrasonic impact treatment (UIT) is a novel post-weld treatment method that influences both the residual stress distribution andimproves the local geometry of the weld. The structural fatigue strength of non-load carrying attachments in the as-welded condition has been experimentally compared to the structural fatigue strength of ultrasonic impact treated welds. Longitudinal attachment specimens made of two thicknesses of steel S355 J0 have been tested for determining the efficiency of ultrasonic impacttreatment. Treated welds were found to have about 50% greater structural fatigue strength, when the slope of the S-N-curve is three. High mean stress fatigue testing based on the Ohta-method decreased the degree of weld improvement only 19%. This indicated that the method could be also applied for large fabricated structures operating under high reactive residual stresses equilibrated within the volume of the structure. The thickness of specimens has no significant effect tothe structural fatigue strength. The fatigue class difference between 5 mm and 8 mm specimen was only 8%. It was hypothesized that the UIT method added a significant crack initiation period to the total fatigue life of the welded joints. Crack initiation life was estimated by a local strain approach. Material parameters were defined using a modified Uniform Material Law developed in Germany. Finite element analysis and X-ray diffraction were used to define, respectively, the stress concentration and mean stress. The theoretical fatigue life was found to have good accuracy comparing to experimental fatigue tests.The predictive behaviour of the local strain approach combined with the uniformmaterial law was excellent for the joint types and conditions studied in this work.
Resumo:
Fibre-reinforced composite (FRC) root canal posts are suggested to have biomechanical benefits over traditional metallic posts, but they lack good adhesion to resin composites. The aim of this series of studies was to evaluate the adhesion of individually formed fibre-reinforced composite material to composite resin and dentin, as well as some mechanical properties. Flexural properties were evaluated and compared between individually formed FRC post material and different prefabricated posts. The depth of polymerization of the individually formed FRC post material was evaluated with IR spectrophotometry and microhardness measurements, and compared to that of resin without fibres. Bonding properties of the individually formed FRC post to resin cements and dentin were tested using Pull-out- and Push-out-force tests, evaluated with scanning electron microscopy, and compared to those of prefabricated FRC and metal posts. Load-bearing capacity and microstrain were evaluated and failure mode assessment was made on incisors restored with individually formed FRC posts of different structures and prefabricated posts. The results of these studies show that the individually polymerized and formed FRC post material had higher flexural properties compared to the commercial prefabricated FRC posts. The individually polymerized FRC material showed almost the same degree of conversion after light polymerization as monomer resin without fibres. Moreover, it was found that the individually formed FRC post material with a semiinterpenetrating polymer network (IPN) polymer matrix bonded better to composite resin luting cement, than did the prefabricated posts with a cross-linked polymer matrix. Furthermore, it was found that, contrary to the other posts, there were no adhesive failures between the individually formed FRC posts and composite resin luting cement. This suggests better interfacial adhesion of cements to these posts. Although no differences in load-bearing capacity or microstrain could be seen, the incisors restored with individually formed FRC posts with a hollow structure showed more favourable failures compared to other prefabricated posts. These studies suggest that it is possible to use individually formed FRC material with semi-IPN polymer matrix as root canal post material. They also indicate that there are benefits especially regarding the bonding properties to composite resin and dentin with this material compared to prefabricated FRC post material with a cross-linked matrix. Furthermore, clinically more repairable failures were found with this material compared to those of prefabricated posts.
Resumo:
Työn tavoitteena oli uudistaa Rautaruukki Steelin terästuotteiden hinnasto päätuotteiden osalta. Rautaruukki Steelin päätuotteita ovat kuuma- ja kylmävalssatut, kuumasinkityt ja maalipinnoitetut Raahen ja Hämeenlinnan tehtaiden tuottamat terästuotteet. Ensin selvitettiin tuotantohyödykkeiden hinnoittelua ja eri hinnoittelumenetelmiä kirjallisuuden avulla. Tämän jälkeen selvitettiin hinnaston nykytilaa ja uudistetun hinnaston tavoitteita. Hinnaston uudistamisessa käytettiin apuna kilpailijaseurantaa kahden tärkeimmän kilpailijan osalta, paperiteollisuuden benchmarkingia sekä myyntihenkilöstön ja asiakkaiden haastatteluja. Lopuksi perehdyttiin tuotanto- ja kustannusrakenteeseen. Hinnaston uudistamisen taustalla ovat yrityksen strategia- ja teräsmarkkinoiden muutokset. Teräksen hinnoittelu voi olla nyt vapaampaa ja harmonisoiduista hinnastorakenteista ja yhtenevistä perushintaan perustuvista hinnoista voidaan siirtyä kohti Rautaruukin omia tuotanto- ja kustannusrakenteita vastaavaan hinnoitteluun. Hinnaston uudistuksella pyritään myös läpinäkyvyyden ja vertailtavuuden häivyttämiseen. Lisäksi taustalla on brandituotteiden aseman vahvistaminen ja kannattavuuden nostaminen. Perushintapohjaisesta hinnoittelusta kokonaan luopuminen kaatui suurimmaksi osaksi myyntihenkilöstön vastustukseen, jonka vuoksi hinnasto jaettiin kahteen osaan: standardituote- ja brandituotehinnastoihin. Standardituotteiden hinnoittelussa pitäydyttiin nykyisen kaltaisessa kilpailijasuuntautuneessa hinnoittelussa, kun taas brandituotteiden hinnoittelussa sovellettiin markkinalähtöistä efektiivihinnoittelua.
Resumo:
The goal of this thesis is to give information to machine designers about how to design and size sheet metal structures and joints. Generally, the designing object is to lighten structures. To design structures that are light and can carry loads more effectively, designers have to be updated of new manufacturing techniques and new designing methods and criterions. With knowledge of this thesis, a designer can recognize objects and methods plus how and where it is possible to apply these new more effectively load carrying structures. The thesis gives answers to questions of corrosion and material planning, goes into joint types and manufacturing techniques of sheet metal structures. One of the main issues is to develop designers world of ideas to design right kind of products with new lasertechniques.
Resumo:
We present a brief résumé of the history of solidification research and key factors affecting the solidification of fusion welds. There is a general agreement of the basic solidification theory, albeit differing - even confusing - nomenclatures do exist, and Cases 2 and 3 (the Chalmers' basic boundary conditions for solidification, categorized by Savage as Cases) are variably emphasized. Model Frame, a tool helping to model the continuum of fusion weld solidification from start to end, is proposed. It incorporates the general solidification models, of which the pertinent ones are selected for the actual modeling. The basic models are the main solidification Cases 1…4. These discrete Cases are joined with Sub-Cases: models of Pfann, Flemings and others, bringing needed Sub-Case variables into the model. Model Frame depicts a grain growing from the weld interface to its centerline. Besides modeling, the Model Frame supports education and academic debate. The new mathematical modeling techniques will extend its use into multi-dimensional modeling, introducing new variables and increasing the modeling accuracy. We propose a model: melting/solidification-model (M/S-model) - predicting the solute profile at the start of the solidification of a fusion weld. This Case 3-based Sub-Case takes into account the melting stage, the solute back-diffusion in the solid, and the growth rate acceleration typical to fusion welds. We propose - based on works of Rutter & Chalmers, David & Vitek and our experimental results on copper - that NEGS-EGS-transition is not associated only with cellular-dendritic-transition. Solidification is studied experimentally on pure and doped copper with welding speed range from 0 to 200 cm/min, with one test at 3000 cm/min. Found were only planar and cellular structures, no dendrites - columnar or equiaxed. Cell sub structures: rows of cubic elements we call "cubelettes", "cell-bands" and "micro-cells", as well as an anomalous crack morphology "crack-eye", were detected, as well as microscopic hot crack nucleus we call "grain-lag cracks", caused by a grain slightly lagging behind its neighbors in arrival to the weld centerline. Varestraint test and R-test revealed a change of crack morphologies from centerline cracks to grainand cell boundary cracks with an increasing welding speed. High speed made the cracks invisible to bare eye and hardly detectable with light microscope, while electron microscope often revealed networks of fine micro-cracks.