25 resultados para interval prediction
Resumo:
In this thesis, a classi cation problem in predicting credit worthiness of a customer is tackled. This is done by proposing a reliable classi cation procedure on a given data set. The aim of this thesis is to design a model that gives the best classi cation accuracy to e ectively predict bankruptcy. FRPCA techniques proposed by Yang and Wang have been preferred since they are tolerant to certain type of noise in the data. These include FRPCA1, FRPCA2 and FRPCA3 from which the best method is chosen. Two di erent approaches are used at the classi cation stage: Similarity classi er and FKNN classi er. Algorithms are tested with Australian credit card screening data set. Results obtained indicate a mean classi cation accuracy of 83.22% using FRPCA1 with similarity classi- er. The FKNN approach yields a mean classi cation accuracy of 85.93% when used with FRPCA2, making it a better method for the suitable choices of the number of nearest neighbors and fuzziness parameters. Details on the calibration of the fuzziness parameter and other parameters associated with the similarity classi er are discussed.
Resumo:
Cyanobacteria are unicellular, non-nitrogen-fixing prokaryotes, which perform photosynthesis similarly as higher plants. The cyanobacterium Synechocystis sp. strain PCC 6803 is used as a model organism in photosynthesis research. My research described herein aims at understanding the function of the photosynthetic machinery and how it responds to changes in the environment. Detailed knowledge of the regulation of photosynthesis in cyanobacteria can be utilized for biotechnological purposes, for example in the harnessing of solar energy for biofuel production. In photosynthesis, iron participates in electron transfer. Here, we focused on iron transport in Synechocystis sp. strain PCC 6803 and particularly on the environmental regulation of the genes encoding the FutA2BC ferric iron transporter, which belongs to the ABC transporter family. A homology model built for the ATP-binding subunit FutC indicates that it has a functional ATPbinding site as well as conserved interactions with the channel-forming subunit FutB in the transporter complex. Polyamines are important for the cell proliferation, differentiation and apoptosis in prokaryotic and eukaryotic cells. In plants, polyamines have special roles in stress response and in plant survival. The polyamine metabolism in cyanobacteria in response to environmental stress is of interest in research on stress tolerance of higher plants. In this thesis, the potd gene encoding an polyamine transporter subunit from Synechocystis sp. strain PCC 6803 was characterized for the first time. A homology model built for PotD protein indicated that it has capability of binding polyamines, with the preference for spermidine. Furthermore, in order to investigate the structural features of the substrate specificity, polyamines were docked into the binding site. Spermidine was positioned very similarly in Synechocystis PotD as in the template structure and had most favorable interactions of the docked polyamines. Based on the homology model, experimental work was conducted, which confirmed the binding preference. Flavodiiron proteins (Flv) are enzymes, which protect the cell against toxicity of oxygen and/or nitric oxide by reduction. In this thesis, we present a novel type of photoprotection mechanism in cyanobacteria by the heterodimer of Flv2/Flv4. The constructed homology model of Flv2/Flv4 suggests a functional heterodimer capable of rapid electron transfer. The unknown protein sll0218, encoded by the flv2-flv4 operon, is assumed to facilitate the interaction of the Flv2/Flv4 heterodimer and energy transfer between the phycobilisome and PSII. Flv2/Flv4 provides an alternative electron transfer pathway and functions as an electron sink in PSII electron transfer.
Resumo:
A linear prediction procedure is one of the approved numerical methods of signal processing. In the field of optical spectroscopy it is used mainly for extrapolation known parts of an optical signal in order to obtain a longer one or deduce missing signal samples. The first is needed particularly when narrowing spectral lines for the purpose of spectral information extraction. In the present paper the coherent anti-Stokes Raman scattering (CARS) spectra were under investigation. The spectra were significantly distorted by the presence of nonlinear nonresonant background. In addition, line shapes were far from Gaussian/Lorentz profiles. To overcome these disadvantages the maximum entropy method (MEM) for phase spectrum retrieval was used. The obtained broad MEM spectra were further underwent the linear prediction analysis in order to be narrowed.
Resumo:
This thesis studies the predictability of market switching and delisting events from OMX First North Nordic multilateral stock exchange by using financial statement information and market information from 2007 to 2012. This study was conducted by using a three stage process. In first stage relevant theoretical framework and initial variable pool were constructed. Then, explanatory analysis of the initial variable pool was done in order to further limit and identify relevant variables. The explanatory analysis was conducted by using self-organizing map methodology. In the third stage, the predictive modeling was carried out with random forests and support vector machine methodologies. It was found that the explanatory analysis was able to identify relevant variables. The results indicate that the market switching and delisting events can be predicted in some extent. The empirical results also support the usability of financial statement and market information in the prediction of market switching and delisting events.
Resumo:
The main objective of this master’s thesis is to examine if Weibull analysis is suitable method for warranty forecasting in the Case Company. The Case Company has used Reliasoft’s Weibull++ software, which is basing on the Weibull method, but the Company has noticed that the analysis has not given right results. This study was conducted making Weibull simulations in different profit centers of the Case Company and then comparing actual cost and forecasted cost. Simula-tions were made using different time frames and two methods for determining future deliveries. The first sub objective is to examine, which parameters of simulations will give the best result to each profit center. The second sub objective of this study is to create a simple control model for following forecasted costs and actual realized costs. The third sub objective is to document all Qlikview-parameters of profit centers. This study is a constructive research, and solutions for company’s problems are figured out in this master’s thesis. In the theory parts were introduced quality issues, for example; what is quality, quality costing and cost of poor quality. Quality is one of the major aspects in the Case Company, so understand-ing the link between quality and warranty forecasting is important. Warranty management was also introduced and other different tools for warranty forecasting. The Weibull method and its mathematical properties and reliability engineering were introduced. The main results of this master’s thesis are that the Weibull analysis forecasted too high costs, when calculating provision. Although, some forecasted values of profit centers were lower than actual values, the method works better for planning purposes. One of the reasons is that quality improving or alternatively quality decreasing is not showing in the results of the analysis in the short run. The other reason for too high values is that the products of the Case Company are com-plex and analyses were made in the profit center-level. The Weibull method was developed for standard products, but products of the Case Company consists of many complex components. According to the theory, this method was developed for homogeneous-data. So the most im-portant notification is that the analysis should be made in the product level, not the profit center level, when the data is more homogeneous.
Resumo:
Very preterm birth is a risk for brain injury and abnormal neurodevelopment. While the incidence of cerebral palsy has decreased due to advances in perinatal and neonatal care, the rate of less severe neuromotor problems continues to be high in very prematurely born children. Neonatal brain imaging can aid in identifying children for closer follow-up and in providing parents information on developmental risks. This thesis aimed to study the predictive value of structural brain magnetic resonance imaging (MRI) at term age, serial neonatal cranial ultrasound (cUS), and structured neurological examinations during the longitudinal follow-up for the neurodevelopment of very preterm born children up to 11 years of age as a part of the PIPARI Study (The Development and Functioning of Very Low Birth Weight Infants from Infancy to School Age). A further aim was to describe the associations between regional brain volumes and long-term neuromotor profile. The prospective follow-up comprised of the assessment of neurosensory development at 2 years of corrected age, cognitive development at 5 years of chronological age, and neuromotor development at 11 years of age. Neonatal brain imaging and structured neurological examinations predicted neurodevelopment at all age-points. The combination of neurological examination and brain MRI or cUS improved the predictive value of neonatal brain imaging alone. Decreased brain volumes associated with neuromotor performance. At the age of 11 years, the majority of the very preterm born children had age-appropriate neuromotor development and after-school sporting activities. Long-term clinical follow-up is recommended at least for all very preterm infants with major brain pathologies.