77 resultados para gas sensor,


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Substances emitted into the atmosphere by human activities in urban and industrial areas cause environmental problems such as air quality degradation, respiratory diseases, climate change, global warming, and stratospheric ozone depletion. Volatile organic compounds (VOCs) are major air pollutants, emitted largely by industry, transportation and households. Many VOCs are toxic, and some are considered to be carcinogenic, mutagenic, or teratogenic. A wide spectrum of VOCs is readily oxidized photocatalytically. Photocatalytic oxidation (PCO) over titanium dioxide may present a potential alternative to air treatment strategies currently in use, such as adsorption and thermal treatment, due to its advantageous activity under ambient conditions, although higher but still mild temperatures may also be applied. The objective of the present research was to disclose routes of chemical reactions, estimate the kinetics and the sensitivity of gas-phase PCO to reaction conditions in respect of air pollutants containing heteroatoms in their molecules. Deactivation of the photocatalyst and restoration of its activity was also taken under consideration to assess the practical possibility of the application of PCO to the treatment of air polluted with VOCs. UV-irradiated titanium dioxide was selected as a photocatalyst for its chemical inertness, non-toxic character and low cost. In the present work Degussa P25 TiO2 photocatalyst was mostly used. In transient studies platinized TiO2 was also studied. The experimental research into PCO of following VOCs was undertaken: - methyl tert-butyl ether (MTBE) as the basic oxygenated motor fuel additive and, thus, a major non-biodegradable pollutant of groundwater; - tert-butyl alcohol (TBA) as the primary product of MTBE hydrolysis and PCO; - ethyl mercaptan (ethanethiol) as one of the reduced sulphur pungent air pollutants in the pulp-and-paper industry; - methylamine (MA) and dimethylamine (DMA) as the amino compounds often emitted by various industries. The PCO of VOCs was studied using a continuous-flow mode. The PCO of MTBE and TBA was also studied by transient mode, in which carbon dioxide, water, and acetone were identified as the main gas-phase products. The volatile products of thermal catalytic oxidation (TCO) of MTBE included 2-methyl-1-propene (2-MP), carbon monoxide, carbon dioxide and water; TBA decomposed to 2-MP and water. Continuous PCO of 4 TBA proceeded faster in humid air than dry air. MTBE oxidation, however, was less sensitive to humidity. The TiO2 catalyst was stable during continuous PCO of MTBE and TBA above 373 K, but gradually lost activity below 373 K; the catalyst could be regenerated by UV irradiation in the absence of gas-phase VOCs. Sulphur dioxide, carbon monoxide, carbon dioxide and water were identified as ultimate products of PCO of ethanethiol. Acetic acid was identified as a photocatalytic oxidation by-product. The limits of ethanethiol concentration and temperature, at which the reactor performance was stable for indefinite time, were established. The apparent reaction kinetics appeared to be independent of the reaction temperature within the studied limits, 373 to 453 K. The catalyst was completely and irreversibly deactivated with ethanethiol TCO. Volatile PCO products of MA included ammonia, nitrogen dioxide, nitrous oxide, carbon dioxide and water. Formamide was observed among DMA PCO products together with others similar to the ones of MA. TCO for both substances resulted in the formation of ammonia, hydrogen cyanide, carbon monoxide, carbon dioxide and water. No deactivation of the photocatalyst during the multiple long-run experiments was observed at the concentrations and temperatures used in the study. PCO of MA was also studied in the aqueous phase. Maximum efficiency was achieved in an alkaline media, where MA exhibited high fugitivity. Two mechanisms of aqueous PCO – decomposition to formate and ammonia, and oxidation of organic nitrogen directly to nitrite - lead ultimately to carbon dioxide, water, ammonia and nitrate: formate and nitrite were observed as intermediates. A part of the ammonia formed in the reaction was oxidized to nitrite and nitrate. This finding helped in better understanding of the gasphase PCO pathways. The PCO kinetic data for VOCs fitted well to the monomolecular Langmuir- Hinshelwood (L-H) model, whereas TCO kinetic behaviour matched the first order process for volatile amines and the L-H model for others. It should be noted that both LH and the first order equations were only the data fit, not the real description of the reaction kinetics. The dependence of the kinetic constants on temperature was established in the form of an Arrhenius equation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simultaneous localization and mapping(SLAM) is a very important problem in mobile robotics. Many solutions have been proposed by different scientists during the last two decades, nevertheless few studies have considered the use of multiple sensors simultane¬ously. The solution is on combining several data sources with the aid of an Extended Kalman Filter (EKF). Two approaches are proposed. The first one is to use the ordinary EKF SLAM algorithm for each data source separately in parallel and then at the end of each step, fuse the results into one solution. Another proposed approach is the use of multiple data sources simultaneously in a single filter. The comparison of the computational com¬plexity of the two methods is also presented. The first method is almost four times faster than the second one.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the thesis the principle of work of eddy current position sensors and the main cautions that must be taken into account while sensor design process are explained. A way of automated eddy current position sensor electrical characteristics measurement is suggested. A prototype of the eddy current position sensor and its electrical characteristics are investigated. The results obtained by means of the automated measuring system are explained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the primary goals for food packages is to protect food against harmful environment, especially oxygen and moisture. The gas transmission rate is the total gas transport through the package, both by permeation through the package material and by leakage through pinholes and cracks. The shelf life of a product can be extended, if the food is stored in a gas tight package. Thus there is a need to test gas tightness of packages. There are several tightness testing methods, and they can be broadly divided into destructive and nondestructive methods. One of the most sensitive methods to detect leaks is by using a non destructive tracer gas technique. Carbon dioxide, helium and hydrogen are the most commonly used tracer gases. Hydrogen is the lightest and the smallest of all gases, which allows it to escape rapidly from the leak areas. The low background concentration of H2 in air (0.5 ppm) enables sensitive leak detection. With a hydrogen leak detector it is also possible to locate leaks. That is not possible with many other tightness testing methods. The experimental work has been focused on investigating the factors which affect the measurement results with the H2leak detector. Also reasons for false results were searched to avoid them in upcoming measurements. From the results of these experiments, the appropriate measurement practice was created in order to have correct and repeatable results. The most important thing for good measurement results is to keep the probe of the detector tightly against the leak. Because of its high diffusion rate, the HZ concentration decreases quickly if holding the probe further away from the leak area and thus the measured H2 leaks would be incorrect and small leaks could be undetected. In the experimental part hydrogen, oxygen and water vapour transmissions through laser beam reference holes (diameters 1 100 μm) were also measured and compared. With the H2 leak detector it was possible to detect even a leakage through 1 μm (diameter) within a few seconds. Water vapour did not penetrate even the largest reference hole (100 μm), even at tropical conditions (38 °C, 90 % RH), whereas some O2 transmission occurred through the reference holes larger than 5 μm. Thus water vapour transmission does not have a significant effect on food deterioration, if the diameter of the leak is less than 100 μm, but small leaks (5 100 μm) are more harmful for the food products, which are sensitive to oxidation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel cantilever pressure sensor was developed in the Department of Physics at the University of Turku in order to solve the sensitivity problems which are encountered when condenser microphones are used in photoacoustic spectroscopy. The cantilever pressure sensor, combined with a laser interferometer for the measurement of the cantilever movements, proved to be highly sensitive. The original aim of this work was to integrate the sensor in a photoacoustic gas detector working in a differential measurement scheme. The integration was made successfully into three prototypes. In addition, the cantilever was also integrated in the photoacoustic FTIR measurement schemes of gas-, liquid-, and solid-phase samples. A theoretical model for the signal generation in each measurement scheme was created and the optimal celldesign discussed. The sensitivity and selectivity of the differential method were evaluated when a blackbody radiator and a mechanical chopper were used with CO2, CH4, CO, and C2H4 gases. The detection limits were in the sub-ppm level for all four gases with only a 1.3 second integration time and the cross interference was well below one percent for all gas combinations other than those between hydrocarbons. Sensitivity with other infrared sources was compared using ethylene as an example gas. In the comparison of sensitivity with different infrared sources the electrically modulated blackbody radiator gave a 35 times higher and the CO2-laser a 100 times lower detection limit than the blackbody radiator with a mechanical chopper. As a conclusion, the differential system is well suited to rapid single gas measurements. Gas-phase photoacoustic FTIR spectroscopy gives the best performance, when several components have to be analyzed simultaneously from multicomponent samples. Multicomponent measurements were demonstrated with a sample that contained different concentrations of CO2, H2O, CO, and four different hydrocarbons. It required an approximately 10 times longer measurement time to achieve the same detection limit for a single gas as with the differential system. The properties of the photoacoustic FTIR spectroscopy were also compared to conventional transmission FTIR spectroscopy by simulations. Solid- and liquid-phase photoacoustic FTIR spectroscopy has several advantages compared to other techniques and therefore it also has a great variety of applications. A comparison of the signal-to-noise ratio between photoacoustic cells with a cantilever microphone and a condenser microphone was done with standard carbon black, polyethene, and sunflower oil samples. The cell with the cantilever microphone proved to have a 5-10 times higher signal-to-noise ratio than the reference detector, depending on the sample. Cantilever enhanced photoacoustics will be an effective tool for gas detection and analysis of solid- and liquid-phase samples. The preliminary prototypes gave good results in all three measurement schemes that were studied. According to simulations, there are possibilities for further enhancement of the sensitivity, as well as other properties, of each system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neste Oil has introduced plant oils and animal fats for the production of NExBTL renewable diesel, and these raw materials differ from the conventional mineral based oils. One subject of new raw materials study is thermal degradation, or in another name pyrolysis, of these organic oils and fats. The aim of this master’s thesis is to increase knowledge on thermal degradation of these new raw materials, and to identify possible gaseous harmful thermal degradation compounds. Another aim is to de-termine the health and environmental hazards of identified compounds. One objective is also to examine the formation possibilities of hazardous compounds in the produc-tion of NExBTL-diesel. Plant oils and animal fats consist mostly of triglycerides. Pyrolysis of triglycerides is a complex phenomenon, and many degradation products can be formed. Based on the literature studies, 13 hazardous degradation products were identified, one of which was acrolein. This compound is very toxic and dangerous to the environment. Own pyrolysis experiments were carried out with rapeseed and palm oils, and with a mix-ture of palm oil and animal fat. At least 12 hazardous compounds, including acrolein, were analysed from the gas phase. According to the experiments, the factors which influence on acrolein formation are the time of the experiment, the sphere (air/hydrogen) in which the experiment is carried out, and the characteristics of the used oil. The production of NExBTL-diesel is not based on pyrolysis. This is why thermal degradation is possible only when abnormal process conditions prevail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the main industries which form the basis of Russian Economical structure is oil and gas. This industry is also playing a significant role for CIS countries. Oil and gas industry is developing intensively attracting foreign investments. This situation is providing sustainable development of machinery production for hazardous areas. Operating in oil and gas areas is always related with occurrence of explosion gas atmospheres. Machines for hazardous areas must be furnished with additional protection of different types. Explosion protection is regulated with standards according to which equipment must be manufactured. In Russia and CIS countries explosion-proof equipment must be constructed in compliance with GOST standards. To confirm that equipment is manufactured according to standards’ requirements and is safe and reliable it must undergo the approval procedure. Certification in Russia is governed by Federal Laws and legislation. Each CIS country has its own approval certificates and permissions for operating in hazardous areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The environmental impact of landfill is a growing concern in waste management practices. Thus, assessing the effectiveness of the solutions implemented to alter the issue is of importance. The objectives of the study were to provide an insight of landfill advantages, and to consolidate landfill gas importance among others alternative fuels. Finally, a case study examining the performances of energy production from a land disposal at Ylivieska was carried out to ascertain the viability of waste to energy project. Both qualitative and quantitative methods were applied. The study was conducted in two parts; the first was the review of literatures focused on landfill gas developments. Specific considerations were the conception of mechanism governing the variability of gas production and the investigation of mathematical models often used in landfill gas modeling. Furthermore, the analysis of two main distributed generation technologies used to generate energy from landfill was carried out. The review of literature revealed a high influence of waste segregation and high level of moisture content for waste stabilization process. It was found that the enhancement in accuracy for forecasting gas rate generation can be done with both mathematical modeling and field test measurements. The result of the case study mainly indicated the close dependence of the power output with the landfill gas quality and the fuel inlet pressure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sensor-based robot control allows manipulation in dynamic environments with uncertainties. Vision is a versatile low-cost sensory modality, but low sample rate, high sensor delay and uncertain measurements limit its usability, especially in strongly dynamic environments. Force is a complementary sensory modality allowing accurate measurements of local object shape when a tooltip is in contact with the object. In multimodal sensor fusion, several sensors measuring different modalities are combined to give a more accurate estimate of the environment. As force and vision are fundamentally different sensory modalities not sharing a common representation, combining the information from these sensors is not straightforward. In this thesis, methods for fusing proprioception, force and vision together are proposed. Making assumptions of object shape and modeling the uncertainties of the sensors, the measurements can be fused together in an extended Kalman filter. The fusion of force and visual measurements makes it possible to estimate the pose of a moving target with an end-effector mounted moving camera at high rate and accuracy. The proposed approach takes the latency of the vision system into account explicitly, to provide high sample rate estimates. The estimates also allow a smooth transition from vision-based motion control to force control. The velocity of the end-effector can be controlled by estimating the distance to the target by vision and determining the velocity profile giving rapid approach and minimal force overshoot. Experiments with a 5-degree-of-freedom parallel hydraulic manipulator and a 6-degree-of-freedom serial manipulator show that integration of several sensor modalities can increase the accuracy of the measurements significantly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this thesis was to study the removal of gases from paper mill circulation waters experimentally and to provide data for CFD modeling. Flow and bubble size measurements were carried out in a laboratory scale open gas separation channel. Particle Image Velocimetry (PIV) technique was used to measure the gas and liquid flow fields, while bubble size measurements were conducted using digital imaging technique with back light illumination. Samples of paper machine waters as well as a model solution were used for the experiments. The PIV results show that the gas bubbles near the feed position have the tendency to escape from the circulation channel at a faster rate than those bubbles which are further away from the feed position. This was due to an increased rate of bubble coalescence as a result of the relatively larger bubbles near the feed position. Moreover, a close similarity between the measured slip velocities of the paper mill waters and that of literature values was obtained. It was found that due to dilution of paper mill waters, the observed average bubble size was considerably large as compared to the average bubble sizes in real industrial pulp suspension and circulation waters. Among the studied solutions, the model solution has the highest average drag coefficient value due to its relatively high viscosity. The results were compared to a 2D steady sate CFD simulation model. A standard Euler-Euler k-ε turbulence model was used in the simulations. The channel free surface was modeled as a degassing boundary. From the drag models used in the simulations, the Grace drag model gave velocity fields closest to the experimental values. In general, the results obtained from experiments and CFD simulations are in good qualitative agreement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The number of autonomous wireless sensor and control nodes has been increasing rapidly during the last decade. Until recently, these wireless nodes have been powered with batteries, which have lead to a short life cycle and high maintenance need. Due to these battery-related problems, new energy sources have been studied to power wireless nodes. One solution is energy harvesting, i.e. extracting energy from the ambient environment. Energy harvesting can provide a long-lasting power source for sensor nodes, with no need for maintenance. In this thesis, various energy harvesting technologies are studied whilst focusing on the theory of each technology and the state-of-the-art solutions of published studies and commercial solutions. In addition to energy harvesting, energy storage and energy management solutions are also studied as a subsystem of a whole energy source solution. Wireless nodes are also used in heavy-duty vehicles. Therefore a reliable, long-lasting and maintenance-free power source is also needed in this kind of environment. A forestry harvester has been used as a case study to study the feasibility of energy harvesting in a forestry harvester’s sliding boom. The energy harvester should be able to produce few milliwatts to power the target system, an independent limit switch.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cutin and suberin are structural and protective polymers of plant surfaces. The epidermal cells of the aerial parts of plants are covered with an extracellular cuticular layer, which consists of polyester cutin, highly resistant cutan, cuticular waxes and polysaccharides which link the layer to the epidermal cells. A similar protective layer is formed by a polyaromatic-polyaliphatic biopolymer suberin, which is present particularly in the cell walls of the phellem layer of periderm of the underground parts of plants (e.g. roots and tubers) and the bark of trees. In addition, suberization is also a major factor in wound healing and wound periderm formation regardless of the plants’ tissue. Knowledge of the composition and functions of cuticular and suberin polymers is important for understanding the physiological properties for the plants and for nutritional quality when these plants are consumed as foods. The aims of the practical work were to assess the chemical composition of cuticular polymers of several northern berries and seeds and suberin of two varieties of potatoes. Cutin and suberin were studied as isolated polymers and further after depolymerization as soluble monomers and solid residues. Chemical and enzymatic depolymerization techniques were compared and a new chemical depolymerization method was developed. Gas chromatographic analysis with mass spectrometric detection (GC-MS) was used to assess the monomer compositions. Polymer investigations were conducted with solid state carbon-13 cross polarization magic angle spinning nuclear magnetic resonance spectroscopy (13C CP-MAS NMR), Fourier transform infrared spectroscopy (FTIR) and microscopic analysis. Furthermore, the development of suberin over one year of post-harvest storage was investigated and the cuticular layers from berries grown in the North and South of Finland were compared. The results show that the amounts of isolated cuticular layers and cutin monomers, as well as monomeric compositions vary greatly between the berries. The monomer composition of seeds was found to differ from the corresponding berry peel monomers. The berry cutin monomers were composed mostly of long-chain aliphatic ω-hydroxy acids, with various mid-chain functionalities (double-bonds, epoxy, hydroxy and keto groups). Substituted α,ω-diacids predominated over ω-hydroxy acids in potato suberin monomers and slight differences were found between the varieties. The newly-developed closed tube chemical method was found to be suitable for cutin and suberin analysis and preferred over the solvent-consuming and laborious reflux method. Enzymatic hydrolysis with cutinase was less effective than chemical methanolysis and showed specificity towards α,ω-diacid bonds. According to 13C CP-MAS NMR and FTIR, the depolymerization residues contained significant amounts of aromatic structures, polysaccharides and possible cutan-type aliphatic moieties. Cultivation location seems to have effect on cuticular composition. The materials studied contained significant amounts of different types of biopolymers that could be utilized for several purposes with or without further processing. The importance of the so-called waste material from industrial processes of berries and potatoes as a source of either dietary fiber or specialty chemicals should be further investigated in detail. The evident impact of cuticular and suberin polymers, among other fiber components, on human health should be investigated in clinical trials. These by-product materials may be used as value-added fiber fractions in the food industry and as raw materials for specialty chemicals such as lubricants and emulsifiers, or as building blocks for novel polymers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation is based on 5 articles which deal with reaction mechanisms of the following selected industrially important organic reactions: 1. dehydrocyclization of n-butylbenzene to produce naphthalene 2. dehydrocyclization of 1-(p-tolyl)-2-methylbutane (MB) to produce 2,6-dimethylnaphthalene 3. esterification of neopentyl glycol (NPG) with different carboxylic acids to produce monoesters 4. skeletal isomerization of 1-pentene to produce 2-methyl-1-butene and 2-methyl-2-butene The results of initial- and integral-rate experiments of n-butylbenzene dehydrocyclization over selfmade chromia/alumina catalyst were applied when investigating reaction 2. Reaction 2 was performed using commercial chromia/alumina of different acidity, platina on silica and vanadium/calcium/alumina as catalysts. On all catalysts used for the dehydrocyclization, major reactions were fragmentation of MB and 1-(p-tolyl)-2-methylbutenes (MBes), dehydrogenation of MB, double bond transfer, hydrogenation and 1,6-cyclization of MBes. Minor reactions were 1,5-cyclization of MBes and methyl group fragmentation of 1,6- cyclization products. Esterification reactions of NPG were performed using three different carboxylic acids: propionic, isobutyric and 2-ethylhexanoic acid. Commercial heterogeneous gellular (Dowex 50WX2), macroreticular (Amberlyst 15) type resins and homogeneous para-toluene sulfonic acid were used as catalysts. At first NPG reacted with carboxylic acids to form corresponding monoester and water. Then monoester esterified with carboxylic acid to form corresponding diester. In disproportionation reaction two monoester molecules formed NPG and corresponding diester. All these three reactions can attain equilibrium. Concerning esterification, water was removed from the reactor in order to prevent backward reaction. Skeletal isomerization experiments of 1-pentene were performed over HZSM-22 catalyst. Isomerization reactions of three different kind were detected: double bond, cis-trans and skeletal isomerization. Minor side reaction were dimerization and fragmentation. Monomolecular and bimolecular reaction mechanisms for skeletal isomerization explained experimental results almost equally well. Pseudohomogeneous kinetic parameters of reactions 1 and 2 were estimated by usual least squares fitting. Concerning reactions 3 and 4 kinetic parameters were estimated by the leastsquares method, but also the possible cross-correlation and identifiability of parameters were determined using Markov chain Monte Carlo (MCMC) method. Finally using MCMC method, the estimation of model parameters and predictions were performed according to the Bayesian paradigm. According to the fitting results suggested reaction mechanisms explained experimental results rather well. When the possible cross-correlation and identifiability of parameters (Reactions 3 and 4) were determined using MCMC method, the parameters identified well, and no pathological cross-correlation could be seen between any parameter pair.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Svavel förekommer i kol och olja och oxideras vid förbränning till svaveldioxid (SO2). Årligen utsläpps stora mängder svaveldioxid som åstadkommer sura regn, minskning av stratosfäriskt ozon och sjukdomar. Av dessa orsaker är det nödvändigt att minska utsläppen av svaveldioxid. Den teknologi som rör planering av reaktorer och processer för rökgasavsvavling (FGD) har utvecklats kraftigt och idag använder man olika typer av lösningar. De vanligaste alternativen för FGD är våtskrubber- och semitorra skrubbersystem (Spray Dry Scrubbers, SDS) och injektionsprocesser för absorbenter. SDS-processer har studerats bland annat av Ahlbeck [4] och Klingspor [5] och injektionsprocesser av Alvfors [6]. Kalksten, som i huvusak består av kalciumkarbonat, används i rökgasavsvavling på grund av sin förmåga att binda svavel i form av sulfatsalter. Den vanligaste rökgasavsvavlingsmetoden är våtskrubbning, där det sedimentära stenmaterialets upplösningshastighet är en av de faktorer som påverkar resultatet mest. Utvärdering av kalkstensreaktivitet är därför speciellt viktig vid planering och drift av anläggningar för rökgasavsvavling. Målsättningen med detta arbete var att modellera upplösningen av olika typers kalksten för att få en kvantitativ utvärdering av kvaliteten på de analyserade proverna. Därtill testades även karbonatbiprodukter från stålindustrin för att utvärdera möjligheter att använda andra råmaterial. Det transienta förloppet har analyserats, varvid upplösningshastigheten modellerades bl.a. i avseende på tid och pH. Under arbetets gång har antalet empiriska korrelationer minskats till fördel för fysikaliska modeller av diffusiva och konvektiva masstransportfenomen. En målsättning var att skapa en effektiv och snabb metod för att testa olika absorbenter för rökgasavsvavling under transienta förlopp. I arbetet användes PSD-analys, gjordes pH-mätningar och andra utvärderingar av de fysikaliska parametrar som ingår i beräkningarna. On-line mätningar för de icke-stationära variablerna tid och pH ger möjlighet att eliminera osäkerheter. Vissa modeller kan vara komplicerade. En modell för upplösningshastigheten med mer detaljerad utvärdering av parametrar och färre approximationer är därför nödvändig då man vill utvärdera reaktionshastigheten för fasta partiklar i sur miljö. Arbetet utfördes under fyra år och fem peer review-artiklar ingår i avhandlingen.