32 resultados para energy recovery
Resumo:
Sähköavusteisten polkupyörien määrä on kasvussa. Kasvua hidastavana tekijänä voidaan pitää niiden keskimäärin yli 1000 euron hintaa, josta suurin osa johtuu akustosta. Tämän työn tarkoituksena on selvittää lineaarigeneraattorin hyödynnettävyyttä sähköavusteisissa polkupyörissä. Lisäksi työssä kuvataan vaiheittain prototyypin suunnittelu ja rakentaminen. Mikäli lineaarigeneraattori-avusteisella sähköpolkupyörällä saavutetaan huomattava pidennys toimintamatkaan, voidaan pyörät varustaa halvemmilla ja kapasiteetiltään pienemmillä akuilla. Lineaarigeneraattorin hankintaa kannustaisi se, että se maksaisi vähemmän kuin vaihto suurempikapasiteettiseen akustoon.
Resumo:
Waste combustion has gone from being a volume reducing discarding-method to an energy recovery process for unwanted material that cannot be reused or recycled. Different fractions of waste are used as fuel today, such as; municipal solid waste, refuse derived fuel, and solid recovered fuel. Furthermore, industrial waste, normally a mixture between commercial waste and building and demolition waste, is common, either as separate fuels or mixed with, for example, municipal solid waste. Compared to fossil or biomass fuels, waste mixtures are extremely heterogeneous, making it a complicated fuel. Differences in calorific values, ash content, moisture content, and changing levels of elements, such as Cl and alkali metals, are common in waste fuel. Moreover, waste contains much higher levels of troublesome trace elements, such as Zn, which is thought to accelerate a corrosion process. Varying fuel quality can be strenuous on the boiler system and may cause fouling and corrosion of heat exchanger surfaces. This thesis examines waste fuels and waste combustion from different angles, with the objective of giving a better understanding of waste as an important fuel in today’s fuel economy. Several chemical characterisation campaigns of waste fuels over longer time periods (10-12 months) was used to determine the fossil content of Swedish waste fuels, to investigate possible seasonal variations, and to study the presence of Zn in waste. Data from the characterisation campaigns were used for thermodynamic equilibrium calculations to follow trends and determine the effect of changing concentrations of various elements. The thesis also includes a study of the thermal behaviour of Zn and a full—scale study of how the bed temperature affects the volatilisation of alkali metals and Zn from the fuel. As mixed waste fuel contains considerable amounts of fresh biomass, such as wood, food waste, paper etc. it would be wrong to classify it as a fossil fuel. When Sweden introduced waste combustion as a part of the European Union emission trading system in the beginning of 2013 there was a need for combustion plants to find a usable and reliable method to determine the fossil content. Four different methods were studied in full-scale of seven combustion plants; 14Canalysis of solid waste, 14C-analysis of flue gas, sorting analysis followed by calculations, and a patented balance method that is using a software program to calculate the fossil content based on parameters from the plant. The study showed that approximately one third of the coal in Swedish waste mixtures has fossil origins and presented the plants with information about the four different methods and their advantages and disadvantages. Characterisation campaigns also showed that industrial waste contain higher levels of trace elements, such as Zn. The content of Zn in Swedish waste fuels was determined to be approximately 800 mg kg-1 on average, based on 42 samples of solid waste from seven different plants with varying mixtures between municipal solid waste and industrial waste. A review study of the occurrence of Zn in fuels confirmed that the highest amounts of Zn are present in waste fuels rather than in fossil or biomass fuels. In tires, Zn is used as a vulcanizing agent and can reach concentration values of 9600-16800 mg kg-1. Waste Electrical and Electronic Equipment is the second Zn-richest fuel and even though on average Zn content is around 4000 mg kg-1, the values of over 19000 mg kg-1 were also reported. The increased amounts of Zn, 3000-4000 mg kg-1, are also found in municipal solid waste, sludge with over 2000 mg kg-1 on average (some exceptions up to 49000 mg kg-1), and other waste derived fuels (over 1000 mg kg-1). Zn is also found in fossil fuels. In coal, the average level of Zn is 100 mg kg-1, the higher amount of Zn was only reported for oil shale with values between 20-2680 mg kg-1. The content of Zn in biomass is basically determined by its natural occurrence and it is typically 10-100 mg kg-1. The thermal behaviour of Zn is of importance to understand the possible reactions taking place in the boiler. By using thermal analysis three common Zn-compounds were studied (ZnCl2, ZnSO4, and ZnO) and compared to phase diagrams produced with thermodynamic equilibrium calculations. The results of the study suggest that ZnCl2(s/l) cannot exist readily in the boiler due to its volatility at high temperatures and its conversion to ZnO in oxidising conditions. Also, ZnSO4 decomposes around 680°C, while ZnO is relatively stable in the temperature range prevailing in the boiler. Furthermore, by exposing ZnO to HCl in a hot environment (240-330°C) it was shown that chlorination of ZnO with HCl gas is possible. Waste fuel containing high levels of elements known to be corrosive, for example, Na and K in combination with Cl, and also significant amounts of trace elements, such as Zn, are demanding on the whole boiler system. A full-scale study of how the volatilisation of Na, K, and Zn is affected by the bed temperature in a fluidised bed boiler was performed parallel with a lab-scale study with the same conditions. The study showed that the fouling rate on deposit probes were decreased by 20 % when the bed temperature was decreased from 870°C to below 720°C. In addition, the lab-scale experiments clearly indicated that the amount of alkali metals and Zn volatilised depends on the reactor temperature.
Resumo:
Vantaan Energia rakentaa ympäristövaatimukset täyttävän jätevoimalan Itä-Vantaan Långmossebergeniin. Jätevoimalassa tullaan käyttämään polttoaineena kierrätykseen kelpaamatonta syntypaikkalajiteltua yhdyskuntajätettä sekä maakaasua. Helsingin seudun ympäristöpalvelut -kuntayhtymä HSY tulee toimittamaan noin 80 % vuosittaisesta jätepolttoaineesta. Tässä työssä on esitetty toimintamalli HSY:n jätteenpolton materiaalivirtojen hallitsemiseksi. Toimintamallin tarkoituksena on antaa ohjeistus jätteiden materiaalivirtojen käsittelymenetelmistä ennen jätteenpolttolaitosta. Lisäksi toimintamallin tarkoituksena on saada vähennettyä pohjakuonan määrää. Toimintamalli sisältää ohjeistuksen kotitalouksien sekajätteen, pienjäteasemien sekajätteen, sekalaisen rakennus- ja purkujätteen sekä kaupan- ja teollisuuden jätteiden käsittelytavoista. Jätevirtojen koostumusta on selvitetty kirjallisuudesta löytyvien tietojen perusteella ja tietoja on täydennetty kesällä 2013 suoritetun lajittelututkimuksen tiedoilla. Tutkimuksen tuloksista selvisi, että pienjäteasemien sekajätteiden lajittelua tehostamalla HSY:llä pystytään tekemään merkittäviä taloudellisia säästöjä. Tutkimuksessa selvisi, että kipsilevy olisi kannattavinta kerätä omalle lavalleen pienjäteasemilla. Sekalaisen rakennus- ja purkujätteen osalta todettiin, että sitä ei kannata ohjata suoraan jätevoimalalle poltettavaksi, eikä sitä voida sijoittaa käsittelemättömänä kaatopaikalle vuoden 2020 jälkeen. Tästä syystä työssä on ehdotettu, että sekalainen rakennus- ja purkujäte ohjattaisiin lajittelulaitokselle käsiteltäväksi ennen sen loppusijoittamista. Tutkimuksen tulosten perusteella voidaan myös todeta, että toimintamallia noudattamalla, pohjakuonan määrää on mahdollista vähentää lähes puolella alkuperäisestä arviosta.
Resumo:
As the rapid development of the society as well as the lifestyle, the generation of commercial waste is getting more complicated to control. The situation of packaging waste and food waste – the main fractions of commercial waste in different countries in Europe and Asia is analyzed in order to evaluate and suggest necessary improvements for the existing waste management system in the city of Hanoi, Vietnam. From all waste generation sources of the city, a total amount of approximately 4000 tons of mixed waste is transported to the composting facility and the disposal site, which emits a huge amount of 1,6Mt of GHG emission to the environment. Recycling activity is taking place spontaneously by the informal pickers, leads to the difficulty in managing the whole system and uncertainty of the overall data. With a relative calculation, resulting in only approximately 0,17Mt CO2 equivalent emission, incinerator is suggested to be the solution of the problem with overloaded landfill and raising energy demand within the inhabitants.
Resumo:
Waste incineration is becoming increasingly widespread method of waste disposal in China. Incineration plants mostly use grate and circular fluidized bed (CFB) technology. Waste combustion in cement production is also beginning to gradually increase. However, Chinese waste composition is causing problems for the energy utilization. Mechanical waste pre-treatment optimizes the combustion process and facilitates the energy recovery. The objective of this study is to identify how Western waste pre-treatment manufacturer could operate in Chinese markets. Chinese waste management industry is reviewed via PESTEL analysis. The current state and future predictions of grate and CFB incineration as well as cement manufacturing are monitored. Grate combustion, which requires lesser waste pre-treatment, is becoming more common at the expense of CFB incineration in China. The most promising future for waste treatment is in cement production industry. Waste treatment equipment manufacturer should try to create pilot projects with biggest cement producers with a view of growing co-operation in the future.
Resumo:
In literature CO 2 liquidization is well studied with steady state modeling. Steady state modeling gives an overview of the process but it doesn’t give information about process behavior during transients. In this master’s thesis three dynamic models of CO2 liquidization were made and tested. Models were straight multi-stage compression model and two compression liquid pumping models, one with and one without cold energy recovery. Models were made with Apros software, models were also used to verify that Apros is capable to model phase changes and over critical state of CO 2. Models were verified against compressor manufacturer’s data and simulation results presented in literature. From the models made in this thesis, straight compression model was found to be the most energy efficient and fastest to react to transients. Also Apros was found to be capable tool for dynamic liquidization modeling.
Resumo:
This report introduces the ENPI project called “EMIR - Exploitation of Municipal and Industrial Residues” which was executed in a co-operation between Lappeenranta University of Technology (LUT), Saint Petersburg State University of Economics (SPbSUE), Saint Petersburg State Technical University of Plant Polymers (SPbSTUPP) and industrial partners from both Leningrad Region (LR), Russia and Finland. The main targets of the research were to identify the possibilities for deinking sludge management scenarios in co-operation with partner companies, to compare the sustainability of the alternatives, and to provide recommendations for the companies in the Leningrad Region on how to best manage deinking sludge. During the literature review, 24 deinking sludge utilization possibilities were identified, the majority falling under material recovery. Furthermore, 11 potential utilizers of deinking sludge were found within the search area determined by the transportation cost. Each potential utilizer was directly contacted in order to establish cooperation for deinking sludge utilization. Finally, four companies, namely, “Finnsementti” – a cement plant in Finland (S1), “St.Gobian Weber” – a light-weight aggregate plant in Finland (S2), “LSR-Cement” – a cement plant in LR (S3), and “Rockwool” – a stone wool plant in LR (S4) were seen as the most promising partners and were included in the economic and environmental assessments. Economic assessment using cost-benefit analysis (CBA) indicated that substitution of heavy fuel oil with dry deinking sludge in S2 was the most feasible option with a benefit/cost ratio (BCR) of 3.6 when all the sludge was utilized. At the same time, the use of 15% of the total sludge amount (the amount that could potentially be treated in the scenario) resulted in a BCR of only 0.16. The use of dry deinking sludge in the production of cement (S3) is a slightly more feasible option with a BCR of 1.1. The use of sludge in stone wool production is feasible only when all the deinking sludge is used and burned in an existing incineration plant. The least economically feasible utilization possibility is the use of sludge in cement production in Finland (S1) due to the high gate fee charged. Environmental assessment was performed applying internationally recognized life cycle assessment (LCA) methodologies: ISO 14040 and ISO 14044. The results of a consequential LCA stated that only S1 and S2 lead to a reduction of all environmental impacts within the impact categories chosen compared to the baseline scenario where deinking sludge is landfilled. Considering S1, the largest reduction of 13% was achieved for the global warming potential (GWP), whereas for S2, the largest decrease of abiotic depletion potential (ADP) was by 1.7%, the eutrophication potential (EP) by 1.8%, and a GWP of 2.1% was documented. In S3, the most notable increase of ADP and acidification potential (AP) by 2.6 and 1.5% was indicated, while the GWP was reduced by 12%, the largest out of all the impact categories. In S4, ADP and AP increased by 2.3 and 2.1% respectively, whereas ODP was reduced by 25%. During LCA, it was noticed that substitution of fuels causes a greater reduction of environmental impact (S1 and S2) than substitution of raw materials (S3 and S4). Despite a number of economically and environmentally acceptable deinking sludge utilization methods being assessed in the research, evaluation of bottlenecks and communications with companies’ representatives uncovered the fact that the availability of the raw materials consumed, and the risks associated with technological problems resulting from the sludge utilization, limited the willingness of industrial partners to start deinking sludge utilization. The research results are of high value for decision-makers at already existing paper mills since the result provide insights regarding alternatives to the deinking sludge utilization possibilities already applied. Thus, the research results support the maximum economic and environmental value recovery from waste paper utilization.
Resumo:
Uusia keinoja kullan erottamiseksi malmista on etsitty viimeaikoina taloudellisista ja ympäristöllisistä syistä kautta maailman. Syanidointimenetelmä on hallinnut kullan talteenottoayli sata vuotta. Menetelmässä kulta liuotetaan laimeaan syanidiliuokseen, jostase otetaan talteen aktiivihiilen avulla. Syanidin käyttöä pyritään kuitenkin vähentämään sen myrkyllisyyden takia. Lisäksi nykyään louhitaan enenemässä määrin malmia, josta on hankala rikastaa kulta kustannustehokkaasti syanidia käyttäen. Kullan talteenottoa syanidi- ja kloridiliuoksesta on selvitetty kirjallisuuden avulla. Kullan kemiaan liuotuksen aikana on perehdytty ennen kullan talteenottoa aktiivihiilellä. Aktiivihiilen elinkaari kullan adsorbenttinaon käsitelty valmistuksesta hylkäämiseen mukaan lukien hiilen myrkyttyminen prosessissa ja regenerointi. Aktiivi-hiilen käyttäytyminen syanidi- ja kloridiliuoksessa on selvitetty erikseen. Kullan talteenottoa kuparipitoisista malmeista on käsitelty. Kullan talteenottoa kloridiliuoksesta aktiivihiiltä käyttäen on tutkittu kokeellisesti. Pääasialliset tutkimuskohteet ovat adsorption kinetiikka, kuparin vaikutus adsorptioon, aktiivihiilen vaikutus adsorptioonja adsorboituneiden metallien strippaus hiilestä selektiivisesti. Hapettavan stippauksen vaikutus kullan desorptioon hiilestä on tutkittu yksityiskohtaisesti. Kullan erotusmenetelmät kuparimalmista aktiivihiiltä käyttäen on selvitetty diplomityön tulosten pohjalta. Diplomityön keskeisten tulosten perusteella kulta ei välttämättä saostu aktiivihiilen pinnalle kloridiliuoksesta. Havainto varmistettiin ladattujen hiilipartikkelien pyyhkäisyelektronimikroskooppikuvista ja partikkeleille tehdyistä mikroanalyyseistä. Kullan pelkistyminen metalliseksi kullaksi aktiivihiilessä voitaneen välttää käyttämällä erittäin hapettavia olosuhteita. Aktiivihiili ilmeisesti hapettuu näissä olosuhteissa, mikä mahdollistaa kultakloridin adsorboitumisen hiileen.
Resumo:
Työssä tutkittiin Andritz-Ahlstrom toimittamien soodakattiloiden lämmönsiirtoa ANITA 2.20- suunnitteluohjelmalla feedback- laskentaa apuna käyttäen. Data laskentaan saatiin kattiloiden takuukokeissa mitatuista arvoista. Mittaukset on suoritettiin Andritz-Ahlstromin henkilökunnan toimesta tehdashenkilökunnan avustuksella. Feedback -laskenta tapahtui mittaustulosten perusteella, joten tiettyä virhettä luonnollisesti esiintyi. Aluksi laskettiin taseet molempien ekojen yli erikseen sekä molemmat yhdessä Excel-taulukkolaskentaohjelmalla. Täältä saatiin oletettu savukaasuvirtaus kattilassa. Tämän jälkeen lämpöpintoja muokattiin todellisuutta vastaaviksi yleislikaisuuskerrointa muuttamalla (overall fouling factor). Kertoimet ovat liikkuivat noin 0.4 ja 1.6 välillä riipuen kattilan tyypistä ja ANITAn oletuksesta lämpöpintojen likaisuudelle. Havaittin että yhtä varsinaista syytä lämpöpintojen eroavaisuuteen oletetusta ei saatu. Syitä toiminnan poikkeamiseen oli monia. Mm. etukammion koolla havaittiin olevan suurtakin vaikutusta tulistimien, etenkin savukaasuvirrassa ensimmäisen tulistimen toimintaan. Yleisesti todettiin muiden tulistimien vastaavan oletettua toimintaa. Keittopinnan ja ekonomiserien toimintaa tutkittiin hivenen suppeammin ja havaittiin niiden toimivan huomattavasti stabiilimmin kuin tulistimien. Likaisuus kertoimet oletetusta vaihtelivat noin ±20 %.
Resumo:
This master’s thesis handles an operating model for an electric equipment supplier conducted sale oriented energy audit for pumping, fan and other motor applications at power plants. The study goes through the largest factors affecting internal electricity use at a power plant, finds an energy audit –like approach for the basis of information gathering and presents the information needed for conducting the analysis. The model is tested in practice at a kraft recovery boiler of a chemical pulping mill. Targets chosen represent some of the largest electric motor applications in the boiler itself and in its fuel handling. The energy saving potential of the chosen targets is calculated by simulating the energy consumption of the alternatives for controlling the targets, and thereafter combining the information with the volume flow duration curve. Results of the research are somewhat divaricated, as all the information needed is not available in the automation system. Some of the targets could be simulated and their energy saving potential calculated quite easily. At some of the targets chosen the monitoring was not sufficient enough for this and additional measurements would have been needed to base the calculations on. In traditional energy audits, energy efficiency of pump and fan applications is not necessarily examined. This means that there are good possibilities for developing the now presented targeted energy audit procedure basis further.
Resumo:
This study presents examination of ways to increase power generation in pulp mills. The main purpose was to identify and verify the best ways of power generation growth. The literature part of this study presented operation of energy pulp mill departments, energy consumption and generation by the recovery and power boilers. The second chapter of this part described the main directions for increase of electricity generation rise of black liquor dry solid content, increase of main steam parameters, flue gas heat recovery technologies, feed water and combustion air preheating. The third chapter of the literature part presented possible technical, environment and corrosion risks appeared from described alternatives. In the experimental part of this study, calculations and results of possible models with alternatives was presented. The possible combinations of alternatives were generated in 44 `models of energy pulp mill. The target of this part was define extra electricity generation after alternatives using and estimate profitability of generated models. The calculations were made by computer programme PROSIM. In the conclusions, the results were estimated on the basis of extra electricity generation and equipment design data of models. The profitability of cases was verified by their payback periods and additional incomes.
Resumo:
In recent years the environmental issues and the energy saving have become increasingly import in modern society where industry is the major emission factor and energy consumer. Generally, most of the total energy consumption is caused by electrical drives used in industrial applications and thus improving the performance of electrical drives give an opportunity to improve the energy efficiency. In this Master Thesis improving the energy efficiency in different electrical drives is clarified with different cases: regenerative braking in the electric grid or recovery of the braking energy into an energy storage. In addition, as an example, the energy consumption of an elevator is analyzed by measurements. From these measurement results it can be estimated how much the share of the standby energy consumption is from the total energy consumption and how much regenerative energy is available. The latter part of the thesis concentrates on determination of the properties of lithium iron phosphate battery with measurements.
Resumo:
In this work mathematical programming models for structural and operational optimisation of energy systems are developed and applied to a selection of energy technology problems. The studied cases are taken from industrial processes and from large regional energy distribution systems. The models are based on Mixed Integer Linear Programming (MILP), Mixed Integer Non-Linear Programming (MINLP) and on a hybrid approach of a combination of Non-Linear Programming (NLP) and Genetic Algorithms (GA). The optimisation of the structure and operation of energy systems in urban regions is treated in the work. Firstly, distributed energy systems (DES) with different energy conversion units and annual variations of consumer heating and electricity demands are considered. Secondly, district cooling systems (DCS) with cooling demands for a large number of consumers are studied, with respect to a long term planning perspective regarding to given predictions of the consumer cooling demand development in a region. The work comprises also the development of applications for heat recovery systems (HRS), where paper machine dryer section HRS is taken as an illustrative example. The heat sources in these systems are moist air streams. Models are developed for different types of equipment price functions. The approach is based on partitioning of the overall temperature range of the system into a number of temperature intervals in order to take into account the strong nonlinearities due to condensation in the heat recovery exchangers. The influence of parameter variations on the solutions of heat recovery systems is analysed firstly by varying cost factors and secondly by varying process parameters. Point-optimal solutions by a fixed parameter approach are compared to robust solutions with given parameter variation ranges. In the work enhanced utilisation of excess heat in heat recovery systems with impingement drying, electricity generation with low grade excess heat and the use of absorption heat transformers to elevate a stream temperature above the excess heat temperature are also studied.
Resumo:
Wastes and side streams in the mining industry and different anthropogenic wastes often contain valuable metals in such concentrations their recovery may be economically viable. These raw materials are collectively called secondary raw materials. The recovery of metals from these materials is also environmentally favorable, since many of the metals, for example heavy metals, are hazardous to the environment. This has been noticed in legislative bodies, and strict regulations for handling both mining and anthropogenic wastes have been developed, mainly in the last decade. In the mining and metallurgy industry, important secondary raw materials include, for example, steelmaking dusts (recoverable metals e.g. Zn and Mo), zinc plant residues (Ag, Au, Ga, Ge, In) and waste slurry from Bayer process alumina production (Ga, REE, Ti, V). From anthropogenic wastes, waste electrical and electronic equipment (WEEE), among them LCD screens and fluorescent lamps, are clearly the most important from a metals recovery point of view. Metals that are commonly recovered from WEEE include, for example, Ag, Au, Cu, Pd and Pt. In LCD screens indium, and in fluorescent lamps, REEs, are possible target metals. Hydrometallurgical processing routes are highly suitable for the treatment of complex and/or low grade raw materials, as secondary raw materials often are. These solid or liquid raw materials often contain large amounts of base metals, for example. Thus, in order to recover valuable metals, with small concentrations, highly selective separation methods, such as hydrometallurgical routes, are needed. In addition, hydrometallurgical processes are also seen as more environmental friendly, and they have lower energy consumption, when compared to pyrometallurgical processes. In this thesis, solvent extraction and ion exchange are the most important hydrometallurgical separation methods studied. Solvent extraction is a mainstream unit operation in the metallurgical industry for all kinds of metals, but for ion exchange, practical applications are not as widespread. However, ion exchange is known to be particularly suitable for dilute feed solutions and complex separation tasks, which makes it a viable option, especially for processing secondary raw materials. Recovering valuable metals was studied with five different raw materials, which included liquid and solid side streams from metallurgical industries and WEEE. Recovery of high purity (99.7%) In, from LCD screens, was achieved by leaching with H2SO4, extracting In and Sn to D2EHPA, and selectively stripping In to HCl. In was also concentrated in the solvent extraction stage from 44 mg/L to 6.5 g/L. Ge was recovered as a side product from two different base metal process liquors with Nmethylglucamine functional chelating ion exchange resin (IRA-743). Based on equilibrium and dynamic modeling, a mechanism for this moderately complex adsorption process was suggested. Eu and Y were leached with high yields (91 and 83%) by 2 M H2SO4 from a fluorescent lamp precipitate of waste treatment plant. The waste also contained significant amounts of other REEs such as Gd and Tb, but these were not leached with common mineral acids in ambient conditions. Zn was selectively leached over Fe from steelmaking dusts with a controlled acidic leaching method, in which the pH did not go below, but was held close as possible to, 3. Mo was also present in the other studied dust, and was leached with pure water more effectively than with the acidic methods. Good yield and selectivity in the solvent extraction of Zn was achieved by D2EHPA. However, Fe needs to be eliminated in advance, either by the controlled leaching method or, for example, by precipitation. 100% Pure Mo/Cr product was achieved with quaternary ammonium salt (Aliquat 336) directly from the water leachate, without pH adjustment (pH 13.7). A Mo/Cr mixture was also obtained from H2SO4 leachates with hydroxyoxime LIX 84-I and trioctylamine (TOA), but the purities were 70% at most. However with Aliquat 336, again an over 99% pure mixture was obtained. High selectivity for Mo over Cr was not achieved with any of the studied reagents. Ag-NaCl solution was purified from divalent impurity metals by aminomethylphosphonium functional Lewatit TP-260 ion exchange resin. A novel preconditioning method, named controlled partial neutralization, with conjugate bases of weak organic acids, was used to control the pH in the column to avoid capacity losses or precipitations. Counter-current SMB was shown to be a better process configuration than either batch column operation or the cross-current operation conventionally used in the metallurgical industry. The raw materials used in this thesis were also evaluated from an economic point of view, and the precipitate from a waste fluorescent lamp treatment process was clearly shown to be the most promising.
Resumo:
Utilization of biomass-based raw materials for the production of chemicals and materials is gaining an increasing interest. Due to the complex nature of biomass, a major challenge in its refining is the development of efficient fractionation and purification processes. Preparative chromatography and membrane filtration are selective, energy-efficient separation techniques which offer a great potential for biorefinery applications. Both of these techniques have been widely studied. On the other hand, only few process concepts that combine the two methods have been presented in the literature. The aim of this thesis was to find the possible synergetic effects provided by combining chromatographic and membrane separations, with a particular interest in biorefinery separation processes. Such knowledge could be used in the development of new, more efficient separation processes for isolating valuable compounds from complex feed solutions that are typical for the biorefinery environment. Separation techniques can be combined in various ways, from simple sequential coupling arrangements to fully-integrated hybrid processes. In this work, different types of combined separation processes as well as conventional chromatographic separation processes were studied for separating small molecules such as sugars and acids from biomass hydrolysates and spent pulping liquors. The combination of chromatographic and membrane separation was found capable of recovering high-purity products from complex solutions. For example, hydroxy acids of black liquor were successfully recovered using a novel multistep process based on ultrafiltration and size-exclusion chromatography. Unlike any other separation process earlier suggested for this challenging separation task, the new process concept does not require acidification pretreatment, and thus it could be more readily integrated into a pulp-mill biorefinery. In addition to the combined separation processes, steady-state recycling chromatography, which has earlier been studied for small-scale separations of high-value compounds only, was found a promising process alternative for biorefinery applications. In comparison to conventional batch chromatography, recycling chromatography provided higher product purity, increased the production rate and reduced the chemical consumption in the separation of monosaccharides from biomass hydrolysates. In addition, a significant further improvement in the process performance was obtained when a membrane filtration unit was integrated with recycling chromatography. In the light of the results of this work, separation processes based on combining membrane and chromatographic separations could be effectively applied for different biorefinery applications. The main challenge remains in the development of inexpensive separation materials which are resistant towards harsh process conditions and fouling.