26 resultados para Traffic Signals
Resumo:
The twin-city model has found to increase economical activity and well-being. The similar economical, social and cultural background of Finland and Estonia as well as the EU integration give good preconditions to create a twin-city of Helsinki and Tallinn. The relatively long distance between Helsinki and Tallinn is challenging. Therefore, good transport infrastructure and functioning connections are required to form a twin-city of Helsinki and Tallinn. The connections between these cities can be considered also in broader perspective than only from the viewpoint of the twin-city concept. New markets areas have been emerged in Europe due to collapse of planned economy and integration of Europe. Also the transport routes to the markets are changing. The Hel-sinki-Tallinn sea route can be considered as a fast route to the new markets in the Cen-tral and Eastern Europe. The Helsinki-Tallinn sea route is also a potential route to the Western European markets. This study provides an analysis of transport and cargo flows between Finland and Esto-nia for regional and local planners. The main purpose of the study is to clarify the pre-sent situation of the seaborne cargo flows on the Helsinki-Tallinn route and how the cargo flows will develop in the future. The study focuses on the following thematic enti-ties: the Finnish and Estonian seaborne transport system and cargo flows, the structure and volume of the cargo flows on the Helsinki-Tallinn route, the hinterland cargo flows on the Helsinki-Tallinn route and the transport methods used on the Helsinki-Tallinn route. The study was carried out as a desk research, a statistical analysis and an inter-view study during the spring–autumn 2011. The study reveals that during the period 2002–2010 the volume of the seaborne cargo traffic between Finland and Estonia has increased significantly while the trend of the trade volume between Finland and Estonia has remained nearly constant. This indicates that the route via Estonia is increasingly used in the Finnish foreign trade. Because the ports of Helsinki and Tallinn are the main ports in the cargo traffic between Finland and Estonia, the role of the Helsinki-Tallinn route as a sea leg in the hinterland connections of Finland has increased. The growth of the cargo volume on the Helsinki-Tallinn route was estimated to continue on the annual level of 10 % during the next couple of years. In the long run the growth of the cargo volumes depends on the economical and indus-trial development of the former Eastern European countries. If the IMO’s sulphur regu-lations will come in force, the Helsinki-Tallinn route will become one of the main routes also to the Western European markets, besides of the route via Sweden. The study also shows that the fast and reliable connections year round on the Helsinki-Tallinn route have made it possible for service and logistics companies to reconsider their logistics strategies in a new way in the both side of the Gulf of Finland. Anyway, the ropax concept is seen as the only economical profitable solution on the Helsinki-Tallinn route because cargo and passenger traffic are supporting each other. The trucks (vehicle combinations) will remain the main mode of transport on the Helsinki-Tallinn route because general cargo is the main commodity on the route. IMO’s sulphur regula-tions and the changes in the structure of the Finnish industry may create prerequisites for rail road transport in the hinterland connections of Finland. The twin-city model has found to increase economical activity and well-being. The similar economical, social and cultural background of Finland and Estonia as well as the EU integration give good preconditions to create a twin-city of Helsinki and Tallinn. The relatively long distance between Helsinki and Tallinn is challenging. Therefore, good transport infrastructure and functioning connections are required to form a twin-city of Helsinki and Tallinn. The connections between these cities can be considered also in broader perspective than only from the viewpoint of the twin-city concept. New markets areas have been emerged in Europe due to collapse of planned economy and integration of Europe. Also the transport routes to the markets are changing. The Hel-sinki-Tallinn sea route can be considered as a fast route to the new markets in the Cen-tral and Eastern Europe. The Helsinki-Tallinn sea route is also a potential route to the Western European markets. This study provides an analysis of transport and cargo flows between Finland and Esto-nia for regional and local planners. The main purpose of the study is to clarify the pre-sent situation of the seaborne cargo flows on the Helsinki-Tallinn route and how the cargo flows will develop in the future. The study focuses on the following thematic enti-ties: the Finnish and Estonian seaborne transport system and cargo flows, the structure and volume of the cargo flows on the Helsinki-Tallinn route, the hinterland cargo flows on the Helsinki-Tallinn route and the transport methods used on the Helsinki-Tallinn route. The study was carried out as a desk research, a statistical analysis and an inter-view study during the spring–autumn 2011. The study reveals that during the period 2002–2010 the volume of the seaborne cargo traffic between Finland and Estonia has increased significantly while the trend of the trade volume between Finland and Estonia has remained nearly constant. This indicates that the route via Estonia is increasingly used in the Finnish foreign trade. Because the ports of Helsinki and Tallinn are the main ports in the cargo traffic between Finland and Estonia, the role of the Helsinki-Tallinn route as a sea leg in the hinterland connections of Finland has increased. The growth of the cargo volume on the Helsinki-Tallinn route was estimated to continue on the annual level of 10 % during the next couple of years. In the long run the growth of the cargo volumes depends on the economical and indus-trial development of the former Eastern European countries. If the IMO’s sulphur regu-lations will come in force, the Helsinki-Tallinn route will become one of the main routes also to the Western European markets, besides of the route via Sweden. The study also shows that the fast and reliable connections year round on the Helsinki-Tallinn route have made it possible for service and logistics companies to reconsider their logistics strategies in a new way in the both side of the Gulf of Finland. Anyway, the ropax concept is seen as the only economical profitable solution on the Helsinki-Tallinn route because cargo and passenger traffic are supporting each other. The trucks (vehicle combinations) will remain the main mode of transport on the Helsinki-Tallinn route because general cargo is the main commodity on the route. IMO’s sulphur regula-tions and the changes in the structure of the Finnish industry may create prerequisites for rail road transport in the hinterland connections of Finland.
Resumo:
Maritime transport moves around 6 billion tonnes of freight every year. The freight consists of liquid bulks (45%), dry bulks (23%) and general cargo (32%). Freight traffic and transports chains vary according to region, commodity and the origin and the destination of freight. In the European Union the ports sector handles over 90% of the trade with third countries. The share of intra-EU trade is approximately 30% of the total transportation and the number of passengers is over 200 million every year. The Baltic Sea has more than 50,000 vessels a year pass the Skaw at the northernmost tip of Denmark on their way into or out of the Baltic. Roughly 60% to 70% of these vessels are cargo vessels and 17% to 25% tankers. Ports and maritime transport play a crucial role in global commerce today. Today’s business environment is changing rapidly, and the constant changes create challenges for the transport industry and maritime traffic. Ports have to adapt to continuous changes in economic structures, logistics demands, and people’s travel and leisure patterns. In order to ensure the competitiveness of sea connections, the ports need to fully enhance multilateral cross-border understanding and cooperation. In this report the focus is on liner traffic between five ports in the Central Baltic Region: Stockholm, Tallinn, Helsinki Turku and Naantali. The report defines the drivers of the demand for cargo and passenger traffic and highlights the most important factors. The economic situation and foreign trade of each county are elaborated on with detailed information about the flows of traffic between the five ports. Based on expert interviews, the main characteristics of each port, including strengths and weaknesses, are presented. The report is based on primary and secondary data. Primary data was received through interviews and mail surveys. Secondary data was attained through a literature research, statistics, data given by the PENTA ports and webpages. The report is divided into two main parts: the drivers creating the demand for transport and the results of current cargo and passenger flows between PENTA ports.
Resumo:
Maritime transport is the foundation for trade in the Baltic Sea area. It represents over 15% of the world’s cargo traffic and it is predicted to increase by over 100% in the future. There are currently over 2,000 ships sailing on the Baltic Sea and both the number and the size of ships have been growing in recent years. Due to the importance of maritime traffic in the Baltic Sea Region, ports have to be ready to face future challenges and adapt to the changing operational environment. The companies within the transportation industry – in this context ports, shipowners and logistics companies – compete continuously and although the number of companies in the business is not particularly substantial because the products offered are very similar, other motives for managing the supply chain arise. The factors creating competitive advantage are often financial and related to cost efficiency, but geographical location, road infrastructure in the hinterland and vessel connections are among the most important factors. The PENTA project focuses on adding openness, transparency and sharing knowledge and information, so that the challenges of the future can be better addressed with regard to cooperation. This report presents three scenario-based traffic forecasts for routes between the PENTA ports in 2020. The chosen methodology is PESTE, in which the focus in on economic factors affecting future traffic flows. The report further analyses the findings and results of the first PENTA WP2 report “Drivers of demand in cargo and passenger traffic between PENTA ports” and utilises the same material, which was obtained through interviews and mail surveys.
Resumo:
This thesis researches automatic traffic sign inventory and condition analysis using machine vision and pattern recognition methods. Automatic traffic sign inventory and condition analysis can be used to more efficient road maintenance, improving the maintenance processes, and to enable intelligent driving systems. Automatic traffic sign detection and classification has been researched before from the viewpoint of self-driving vehicles, driver assistance systems, and the use of signs in mapping services. Machine vision based inventory of traffic signs consists of detection, classification, localization, and condition analysis of traffic signs. The produced machine vision system performance is estimated with three datasets, from which two of have been been collected for this thesis. Based on the experiments almost all traffic signs can be detected, classified, and located and their condition analysed. In future, the inventory system performance has to be verified in challenging conditions and the system has to be pilot tested.
Resumo:
This thesis focuses on the development of sustainable industrial architectures for bioenergy based on the metaphors of industrial symbiosis and industrial ecosystems, which imply exchange of material and energy side-flows of various industries in order to improve sustainability of those industries on a system level. The studies on industrial symbiosis have been criticised for staying at the level of incremental changes by striving for cycling waste and by-flows of the industries ‘as is’ and leaving the underlying industry structures intact. Moreover, there has been articulated the need for interdisciplinary research on industrial ecosystems as well as the need to extend the management and business perspectives on industrial ecology. This thesis addresses this call by applying a business ecosystem and business model perspective on industrial symbiosis in order to produce knowledge on how industrial ecosystems can be developed that are sustainable environmentally and economically. A case of biogas business is explored and described in four research papers and an extended summary that form this thesis. Since the aim of the research was to produce a normative model for developing sustainable industrial ecosystems, the methodology applied in this research can be characterised as constructive and collaborative. A constructive research mode was required in order to expand the historical knowledge on industrial symbiosis development and business ecosystem development into the knowledge of what should be done, which is crucial for sustainability and the social change it requires. A collaborative research mode was employed through participating in a series of projects devoted to the development of a biogas-for-traffic industrial ecosystem. The results of the study showed that the development of material flow interconnections within industrial symbiosis is inseparable from larger business ecosystem restructuring. This included a shift in the logic of the biogas and traffic fuel industry and a subsequent development of a business ecosystem that would entail the principles of industrial symbiosis and localised energy production and consumption. Since a company perspective has been taken in this thesis, the role of an ecosystem integrator appeared as a crucial means to achieve the required industry restructuring. This, in turn, required the development of a modular and boundary-spanning business model that had a strong focus on establishing collaboration among ecosystem stakeholders and development of multiple local industrial ecosystems as part of business growth. As a result, the designed business model of the ecosystem integrator acquired the necessary flexibility in order to adjust to local conditions, which is crucial for establishing industrial symbiosis. This thesis presents a normative model for the development of a business model required for creating sustainable industrial ecosystems, which contributes to approaches at the policy-makers’ level, proposed earlier. Therefore, this study addresses the call for more research on the business level of industrial ecosystem formation and the implications for the business models of the involved actors. Moreover, the thesis increases the understanding of system innovation and innovation in business ecosystems by explicating how business model innovation can be the trigger for achieving more sustainable industry structures, such as those relying on industrial symbiosis.
Resumo:
This paper describes the development situation of biofuel in China and the research progress and application in transportation and aviation area, including several key technologies of biofuel production: biofuel pretreatment and handling. This paper is aiming to find the best storing, transmitting, feeding and pretreating methods of various materials, as well as a comparison among the advantages and disadvantages of different pretreatment methods, which is expected to reduce cost in production process and reach the maximized benefits. Meanwhile, a case study of one biomass fuel production factory in China is presented with evaluation and analysis on their technology application.
Resumo:
Utvecklingen av flercelliga organismer är en mångfacetterad process som kräver kommunikation celler emellan. Under utvecklingen av en organism måste cellerna göra vissa val, vilket bestämmer riktningen för deras fortsatta utveckling. Utgående från dessa val erhåller cellerna egenskaper som är karaktäristiska för olika celltyper. Notch-signalräckan är en viktig reglerare av valet mellan olika cellöden. Notch-signalräckan aktiveras när Notch-receptorer som uttrycks på ytan av en cell binder till Notch-ligander som uttrycks på ytan av en annan närliggande cell. Denna avhandling belyser mekanismerna som reglerar omsättningen av såväl Notch-receptorer som -ligander till och från cellmembranen, samt ökar förståelsen för hur dessa mekanismer påverkar Notch-medierade cellöden i stamceller. Internalisering av Notch receptorer anses nödvändigt för fullständig aktivering av Notch-signalvägen. De bakomliggande molekylära mekanismerna är dock fortfarande oklara. Vi har upptäckt att atypiskt protein kinas Cζ (aPKCζ) reglerar internaliseringen av Notch-receptorer. aPKCζ fosforylerar Notch, vilket leder till receptorns internalisering, men effekten är beroende av receptorns signaleringsstatus. Vi visar att aPKCζ reglerar Notch-signaleringen och styr både neuroners och muskelcellers differentiering. Ytterligare har vi analyserat samspelet mellan cellskelettet och Notch-signalvägen. Våra resultat visar att intermediärfilamenten, en del av cellskelettet, är viktiga reglerare av Notch-signaleringen både under neuronal och vaskulär utveckling. Intermediärfilamenten vimentin och GFAP reglerar uttrycket av Notch-ligander vid cellmembranen i hjärnans stödceller, astrocyterna, och påverkar därmed neuronala stamcellers cellödesbeslut. Vimentin är även viktigt reglerare av Notch-signalräckan vid angiogenesen. Celler som saknar vimentin uppvisar avvikande Notch-signalering emedan möss som saknar vimentin påvisar en fördröjd utveckling av vaskulaturen under embryonalstadiet. ------------------------------------------------- Monisoluisten organismien kehittyminen on monimutkainen prosessi, joka vaatii viestintää solujen välillä. Kehittymisen aikana solut joutuvat tiettyjen valintojen eteen, mitkä tulevat määrittämään niiden erilaistumisen suunnan. Solut omaksuvat solutyypille ominaisia ominaisuuksia näihin valintoihin perustuen Notch-signalointireitti säätelee solujen erilaistumista eri suuntiin. Notch-signalointireitti aktivoituu, kun Notch-reseptori yhden solun pinnalla sitoo Notch-ligandin toisen, viereisen solun solukalvolla. Tutkimukseni lisää tuntemusta Notch-reseptoreiden ja ligandien solun sisäisestä liikennöinnistä ja sitä säätelevistä mekanismeista, sekä tämän säätelyn vaikutuksista kantasulojen erilaistumiseen. Notch-signalointireitin aktivoituminen vaatii reseptoreiden ja ligandien sisäistämisen solukalvolta, mutta taustalla olevat ja sisäistymistä säätelevät mekanismit ovat vielä epäselviä. Tutkimukseni osoittaa, että atyyppinen proteiinikinaasi Cζ (aPKCζ) säätelee Notch-reseptoreiden endosytoosia. Endosytoosin lopputulos riippuu siitä onko reseptori aktivoitunut ligandin välityksellä vai ei. Tuloksemme osoittavat aPKCζ säätelevän Notch-signalointia ja kontrolloivan sekä hermosolujen, että lihassolujen erilaistumista. Analysoimme myös Notch-signaloinnin ja solun tukirangan vuorovaikutuksia. Välikokoiset filamentit, jotka ovat osa tukirankaa, säätelevät Notch-signalointia neuronaalisen erilaistumisen sekä verisuonten uudismuodostumisen aikana. Vimentiini ja GFAP ovat välikokoisia säikeitä, jotka säätelevät Notch-ligandien ekspressiota astrosyyttien, eli aivojen hermotukisolujen solukalvolla. Vimentiini säätelee myös Notch-signalointireittiä angiogeneesin aikana. Vimentiiniä vailla olevilla soluilla ilmenee heikentynyttä Notch-signalointia, joka voidaan liittää hiirillä ilmenevään vimenttiinin puutteesta johtuvaan viivästyneeseen verisuonien kehitykseen.
Resumo:
This thesis is the Logistics Development Forum's assignment and the work dealing with the development of the Port of Helsinki as part of Helsinki hub. The Forum aims to develop logistics efficiency through public-private co-operation and development of the port is clearly dependent on both factors. Freight volumes in the Port of Helsinki are the biggest single factor in hub and, therefore, the role of the port of the entire hub development is strong. The aim is to look at how the port will develop as a result of changes in the foreign trade of Finland and the Northern European logistics trends in 25 years time period. Work includes the current state analysis and scenario work. The analyses are intended to find out, which trends are the most important in the port volume development. The change and effect of trends is examined through scenarios based on current state. Based on the work, the structure of Finnish export industry and international demand are in the key role in the port volume development. There is significant difference between demands of Finnish exporting products in different export markets and the development between the markets has different impacts on the port volumes by mass and cargo type. On the other hand, the Finnish economy is stuck in a prolonged recession and competition between ports has become a significant factor in the individual port's volume development. Ecological valuesand regulations have changed the competitive landscape and maritime transport emissions reductions has become an important competitive factor for short routes in the Baltic Sea, such as in the link between Helsinki and Tallinn.