37 resultados para Time inventory models


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tutkielman tarkoituksena oli mallintaa varastonhallintajärjestelmä, joka olisi sopiva case yritykselle. Tutkimus aloitettiin case yrityksen varastonhallinan nykytilan kartoituksella, jonka jälkeen tutkittiin varastonhallinnan eri osa-alueisiin. Varastonhallinnan osa-alueista käsiteltiin varastotyyppejä, motiiveja, tavoitteita, kysynnän ennustamista sekä erilaisia varastonhallinnan työkaluja. Sen lisäksi tutkittiin erilaisia varaston täydennysmalleja. Teoriaosuudessa käsiteltiin lisäksi kolmea erilaista tietojärjestelmätyyppiä: toiminnanohjausjärjestelmää, sähköisen kaupankäynnin järjestelmää sekä räätälöityä järjestelmää. Tutkimussuunnitelmassa nämä kolme järjestelmää rajattiin vaihtoehdoiksi, joista jokin valittaisiin case yrityksen varastonhallintajärjestelmäksi. Teorian ja nykytilan pohjalta tehtiin viitekehys, jossa esiteltiin varastonhallintajärjestelmän tieto- ja toiminnallisuusominaisuuksia. Nämä ominaisuudet priorisoitiin neljään eri luokkaan ominaisuuden kriittisyyden mukaan. Järjestelmävaihtoehdot arvioitiin viitekehyksen kriteerien mukaisesti, miten helposti ominaisuudet olisivat toteutettavissa eri vaihtoehdoissa. Tulokset laskettiin näiden arviointien perusteella, jonka jälkeen tulosten analysoinnissa huomattiin, että toiminnanohjausjärjestelmä sopisi parhaiten case yrityksen varastonhallintajärjestelmäksi.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents new, efficient Markov chain Monte Carlo (MCMC) simulation methods for statistical analysis in various modelling applications. When using MCMC methods, the model is simulated repeatedly to explore the probability distribution describing the uncertainties in model parameters and predictions. In adaptive MCMC methods based on the Metropolis-Hastings algorithm, the proposal distribution needed by the algorithm learns from the target distribution as the simulation proceeds. Adaptive MCMC methods have been subject of intensive research lately, as they open a way for essentially easier use of the methodology. The lack of user-friendly computer programs has been a main obstacle for wider acceptance of the methods. This work provides two new adaptive MCMC methods: DRAM and AARJ. The DRAM method has been built especially to work in high dimensional and non-linear problems. The AARJ method is an extension to DRAM for model selection problems, where the mathematical formulation of the model is uncertain and we want simultaneously to fit several different models to the same observations. The methods were developed while keeping in mind the needs of modelling applications typical in environmental sciences. The development work has been pursued while working with several application projects. The applications presented in this work are: a winter time oxygen concentration model for Lake Tuusulanjärvi and adaptive control of the aerator; a nutrition model for Lake Pyhäjärvi and lake management planning; validation of the algorithms of the GOMOS ozone remote sensing instrument on board the Envisat satellite of European Space Agency and the study of the effects of aerosol model selection on the GOMOS algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigates the relationship between the time-varying risk premiums and conditional market risk in the stock markets of the ten member countries of Economy and Monetary Union. Second, it examines whether the conditional second moments change over time and are there asymmetric effects in the conditional covariance matrix. Third, it analyzes the possible effects of the chosen testing framework. Empirical analysis is conducted using asymmetric univariate and multivariate GARCH-in-mean models and assuming three different degrees of market integration. For a daily sample period from 1999 to 2007, the study shows that the time-varying market risk alone is not enough to explain the dynamics of risk premiums and indications are found that the market risk is detected only when its price is allowed to change over time. Also asymmetric effects in the conditional covariance matrix, which is found to be time-varying, are clearly present and should be recognized in empirical asset pricing analyses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis examines whether global, local and exchange risks are priced in Scandinavian countries’ equity markets by using conditional international asset pricing models. The employed international asset pricing models are the world capital asset pricing model, the international asset pricing model augmented with the currency risk, and the partially segmented model augmented with the currency risk. Moreover, this research traces estimated equity risk premiums for the Scandinavian countries. The empirical part of the study is performed using generalized method of moments approach. Monthly observations from February 1994 to June 2007 are used. Investors’ conditional expectations are modeled using several instrumental variables. In order to keep system parsimonious the prices of risk are assumed to be constant whereas expected returns and conditional covariances vary over time. The empirical findings of this thesis suggest that the prices of global and local market risk are priced in the Scandinavian countries. This indicates that the Scandinavian countries are mildly segmented from the global markets. Furthermore, the results show that the exchange risk is priced in the Danish and Swedish stock markets when the partially segmented model is augmented with the currency risk factor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The identifiability of the parameters of a heat exchanger model without phase change was studied in this Master’s thesis using synthetically made data. A fast, two-step Markov chain Monte Carlo method (MCMC) was tested with a couple of case studies and a heat exchanger model. The two-step MCMC-method worked well and decreased the computation time compared to the traditional MCMC-method. The effect of measurement accuracy of certain control variables to the identifiability of parameters was also studied. The accuracy used did not seem to have a remarkable effect to the identifiability of parameters. The use of the posterior distribution of parameters in different heat exchanger geometries was studied. It would be computationally most efficient to use the same posterior distribution among different geometries in the optimisation of heat exchanger networks. According to the results, this was possible in the case when the frontal surface areas were the same among different geometries. In the other cases the same posterior distribution can be used for optimisation too, but that will give a wider predictive distribution as a result. For condensing surface heat exchangers the numerical stability of the simulation model was studied. As a result, a stable algorithm was developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Raw measurement data does not always immediately convey useful information, but applying mathematical statistical analysis tools into measurement data can improve the situation. Data analysis can offer benefits like acquiring meaningful insight from the dataset, basing critical decisions on the findings, and ruling out human bias through proper statistical treatment. In this thesis we analyze data from an industrial mineral processing plant with the aim of studying the possibility of forecasting the quality of the final product, given by one variable, with a model based on the other variables. For the study mathematical tools like Qlucore Omics Explorer (QOE) and Sparse Bayesian regression (SB) are used. Later on, linear regression is used to build a model based on a subset of variables that seem to have most significant weights in the SB model. The results obtained from QOE show that the variable representing the desired final product does not correlate with other variables. For SB and linear regression, the results show that both SB and linear regression models built on 1-day averaged data seriously underestimate the variance of true data, whereas the two models built on 1-month averaged data are reliable and able to explain a larger proportion of variability in the available data, making them suitable for prediction purposes. However, it is concluded that no single model can fit well the whole available dataset and therefore, it is proposed for future work to make piecewise non linear regression models if the same available dataset is used, or the plant to provide another dataset that should be collected in a more systematic fashion than the present data for further analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Identification of order of an Autoregressive Moving Average Model (ARMA) by the usual graphical method is subjective. Hence, there is a need of developing a technique to identify the order without employing the graphical investigation of series autocorrelations. To avoid subjectivity, this thesis focuses on determining the order of the Autoregressive Moving Average Model using Reversible Jump Markov Chain Monte Carlo (RJMCMC). The RJMCMC selects the model from a set of the models suggested by better fitting, standard deviation errors and the frequency of accepted data. Together with deep analysis of the classical Box-Jenkins modeling methodology the integration with MCMC algorithms has been focused through parameter estimation and model fitting of ARMA models. This helps to verify how well the MCMC algorithms can treat the ARMA models, by comparing the results with graphical method. It has been seen that the MCMC produced better results than the classical time series approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Selective papers of the workshop on "Development of models and forest soil surveys for monitoring of soil carbon", Koli, Finland, April 5-9 2006.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Having inventory to cover from all possible problems would increase the inventory level indefinitely in accordance with the standard deviation. If the materials in stock are not used, but kept just to be on the safe side, they are waste. The main objective of this study was to find out, how much inventory is required to cover the requirements, without causing delivery problems towards the end-customers, and how the inventory could be controlled efficiently. Several improvements were made in the controlling principles, and the inventory level was quickly decreased by more than 30 %, and kept on the reached level. The suitability of kanban control was investigated, and it was eventually taken into some use. A great advantage was found in the new procedures in securing the supply. The requests for quotations were diversified, and the faulty basis was corrected. Thus, the inventory surplus would later be avoided, and at the same time, a lot of valuable time was saved from daily routines to further improvement projects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this work is to compare two families of mathematical models for their respective capability to capture the statistical properties of real electricity spot market time series. The first model family is ARMA-GARCH models and the second model family is mean-reverting Ornstein-Uhlenbeck models. These two models have been applied to two price series of Nordic Nord Pool spot market for electricity namely to the System prices and to the DenmarkW prices. The parameters of both models were calibrated from the real time series. After carrying out simulation with optimal models from both families we conclude that neither ARMA-GARCH models, nor conventional mean-reverting Ornstein-Uhlenbeck models, even when calibrated optimally with real electricity spot market price or return series, capture the statistical characteristics of the real series. But in the case of less spiky behavior (System prices), the mean-reverting Ornstein-Uhlenbeck model could be seen to partially succeeded in this task.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The amount of installed wind power has been growing exponentially during the past ten years. As wind turbines have become a significant source of electrical energy, the interactions between the turbines and the electric power network need to be studied more thoroughly than before. Especially, the behavior of the turbines in fault situations is of prime importance; simply disconnecting all wind turbines from the network during a voltage drop is no longer acceptable, since this would contribute to a total network collapse. These requirements have been a contributor to the increased role of simulations in the study and design of the electric drive train of a wind turbine. When planning a wind power investment, the selection of the site and the turbine are crucial for the economic feasibility of the installation. Economic feasibility, on the other hand, is the factor that determines whether or not investment in wind power will continue, contributing to green electricity production and reduction of emissions. In the selection of the installation site and the turbine (siting and site matching), the properties of the electric drive train of the planned turbine have so far been generally not been taken into account. Additionally, although the loss minimization of some of the individual components of the drive train has been studied, the drive train as a whole has received less attention. Furthermore, as a wind turbine will typically operate at a power level lower than the nominal most of the time, efficiency analysis in the nominal operating point is not sufficient. This doctoral dissertation attempts to combine the two aforementioned areas of interest by studying the applicability of time domain simulations in the analysis of the economicfeasibility of a wind turbine. The utilization of a general-purpose time domain simulator, otherwise applied to the study of network interactions and control systems, in the economic analysis of the wind energy conversion system is studied. The main benefits of the simulation-based method over traditional methods based on analytic calculation of losses include the ability to reuse and recombine existing models, the ability to analyze interactions between the components and subsystems in the electric drive train (something which is impossible when considering different subsystems as independent blocks, as is commonly done in theanalytical calculation of efficiencies), the ability to analyze in a rather straightforward manner the effect of selections other than physical components, for example control algorithms, and the ability to verify assumptions of the effects of a particular design change on the efficiency of the whole system. Based on the work, it can be concluded that differences between two configurations can be seen in the economic performance with only minor modifications to the simulation models used in the network interaction and control method study. This eliminates the need ofdeveloping analytic expressions for losses and enables the study of the system as a whole instead of modeling it as series connection of independent blocks with no lossinterdependencies. Three example cases (site matching, component selection, control principle selection) are provided to illustrate the usage of the approach and analyze its performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transitional flow past a three-dimensional circular cylinder is a widely studied phenomenon since this problem is of interest with respect to many technical applications. In the present work, the numerical simulation of flow past a circular cylinder, performed by using a commercial CFD code (ANSYS Fluent 12.1) with large eddy simulation (LES) and RANS (κ - ε and Shear-Stress Transport (SST) κ - ω! model) approaches. The turbulent flow for ReD = 1000 & 3900 is simulated to investigate the force coefficient, Strouhal number, flow separation angle, pressure distribution on cylinder and the complex three dimensional vortex shedding of the cylinder wake region. The numerical results extracted from these simulations have good agreement with the experimental data (Zdravkovich, 1997). Moreover, grid refinement and time-step influence have been examined. Numerical calculations of turbulent cross-flow in a staggered tube bundle continues to attract interest due to its importance in the engineering application as well as the fact that this complex flow represents a challenging problem for CFD. In the present work a time dependent simulation using κ – ε, κ - ω! and SST models are performed in two dimensional for a subcritical flow through a staggered tube bundle. The predicted turbulence statistics (mean and r.m.s velocities) have good agreement with the experimental data (S. Balabani, 1996). Turbulent quantities such as turbulent kinetic energy and dissipation rate are predicted using RANS models and compared with each other. The sensitivity of grid and time-step size have been analyzed. Model constants sensitivity study have been carried out by adopting κ – ε model. It has been observed that model constants are very sensitive to turbulence statistics and turbulent quantities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Forest inventories are used to estimate forest characteristics and the condition of forest for many different applications: operational tree logging for forest industry, forest health state estimation, carbon balance estimation, land-cover and land use analysis in order to avoid forest degradation etc. Recent inventory methods are strongly based on remote sensing data combined with field sample measurements, which are used to define estimates covering the whole area of interest. Remote sensing data from satellites, aerial photographs or aerial laser scannings are used, depending on the scale of inventory. To be applicable in operational use, forest inventory methods need to be easily adjusted to local conditions of the study area at hand. All the data handling and parameter tuning should be objective and automated as much as possible. The methods also need to be robust when applied to different forest types. Since there generally are no extensive direct physical models connecting the remote sensing data from different sources to the forest parameters that are estimated, mathematical estimation models are of "black-box" type, connecting the independent auxiliary data to dependent response data with linear or nonlinear arbitrary models. To avoid redundant complexity and over-fitting of the model, which is based on up to hundreds of possibly collinear variables extracted from the auxiliary data, variable selection is needed. To connect the auxiliary data to the inventory parameters that are estimated, field work must be performed. In larger study areas with dense forests, field work is expensive, and should therefore be minimized. To get cost-efficient inventories, field work could partly be replaced with information from formerly measured sites, databases. The work in this thesis is devoted to the development of automated, adaptive computation methods for aerial forest inventory. The mathematical model parameter definition steps are automated, and the cost-efficiency is improved by setting up a procedure that utilizes databases in the estimation of new area characteristics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this dissertation is to improve the dynamic simulation of fluid power circuits. A fluid power circuit is a typical way to implement power transmission in mobile working machines, e.g. cranes, excavators etc. Dynamic simulation is an essential tool in developing controllability and energy-efficient solutions for mobile machines. Efficient dynamic simulation is the basic requirement for the real-time simulation. In the real-time simulation of fluid power circuits there exist numerical problems due to the software and methods used for modelling and integration. A simulation model of a fluid power circuit is typically created using differential and algebraic equations. Efficient numerical methods are required since differential equations must be solved in real time. Unfortunately, simulation software packages offer only a limited selection of numerical solvers. Numerical problems cause noise to the results, which in many cases leads the simulation run to fail. Mathematically the fluid power circuit models are stiff systems of ordinary differential equations. Numerical solution of the stiff systems can be improved by two alternative approaches. The first is to develop numerical solvers suitable for solving stiff systems. The second is to decrease the model stiffness itself by introducing models and algorithms that either decrease the highest eigenvalues or neglect them by introducing steady-state solutions of the stiff parts of the models. The thesis proposes novel methods using the latter approach. The study aims to develop practical methods usable in dynamic simulation of fluid power circuits using explicit fixed-step integration algorithms. In this thesis, twomechanisms whichmake the systemstiff are studied. These are the pressure drop approaching zero in the turbulent orifice model and the volume approaching zero in the equation of pressure build-up. These are the critical areas to which alternative methods for modelling and numerical simulation are proposed. Generally, in hydraulic power transmission systems the orifice flow is clearly in the turbulent area. The flow becomes laminar as the pressure drop over the orifice approaches zero only in rare situations. These are e.g. when a valve is closed, or an actuator is driven against an end stopper, or external force makes actuator to switch its direction during operation. This means that in terms of accuracy, the description of laminar flow is not necessary. But, unfortunately, when a purely turbulent description of the orifice is used, numerical problems occur when the pressure drop comes close to zero since the first derivative of flow with respect to the pressure drop approaches infinity when the pressure drop approaches zero. Furthermore, the second derivative becomes discontinuous, which causes numerical noise and an infinitely small integration step when a variable step integrator is used. A numerically efficient model for the orifice flow is proposed using a cubic spline function to describe the flow in the laminar and transition areas. Parameters for the cubic spline function are selected such that its first derivative is equal to the first derivative of the pure turbulent orifice flow model in the boundary condition. In the dynamic simulation of fluid power circuits, a tradeoff exists between accuracy and calculation speed. This investigation is made for the two-regime flow orifice model. Especially inside of many types of valves, as well as between them, there exist very small volumes. The integration of pressures in small fluid volumes causes numerical problems in fluid power circuit simulation. Particularly in realtime simulation, these numerical problems are a great weakness. The system stiffness approaches infinity as the fluid volume approaches zero. If fixed step explicit algorithms for solving ordinary differential equations (ODE) are used, the system stability would easily be lost when integrating pressures in small volumes. To solve the problem caused by small fluid volumes, a pseudo-dynamic solver is proposed. Instead of integration of the pressure in a small volume, the pressure is solved as a steady-state pressure created in a separate cascade loop by numerical integration. The hydraulic capacitance V/Be of the parts of the circuit whose pressures are solved by the pseudo-dynamic method should be orders of magnitude smaller than that of those partswhose pressures are integrated. The key advantage of this novel method is that the numerical problems caused by the small volumes are completely avoided. Also, the method is freely applicable regardless of the integration routine applied. The superiority of both above-mentioned methods is that they are suited for use together with the semi-empirical modelling method which necessarily does not require any geometrical data of the valves and actuators to be modelled. In this modelling method, most of the needed component information can be taken from the manufacturer’s nominal graphs. This thesis introduces the methods and shows several numerical examples to demonstrate how the proposed methods improve the dynamic simulation of various hydraulic circuits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In any decision making under uncertainties, the goal is mostly to minimize the expected cost. The minimization of cost under uncertainties is usually done by optimization. For simple models, the optimization can easily be done using deterministic methods.However, many models practically contain some complex and varying parameters that can not easily be taken into account using usual deterministic methods of optimization. Thus, it is very important to look for other methods that can be used to get insight into such models. MCMC method is one of the practical methods that can be used for optimization of stochastic models under uncertainty. This method is based on simulation that provides a general methodology which can be applied in nonlinear and non-Gaussian state models. MCMC method is very important for practical applications because it is a uni ed estimation procedure which simultaneously estimates both parameters and state variables. MCMC computes the distribution of the state variables and parameters of the given data measurements. MCMC method is faster in terms of computing time when compared to other optimization methods. This thesis discusses the use of Markov chain Monte Carlo (MCMC) methods for optimization of Stochastic models under uncertainties .The thesis begins with a short discussion about Bayesian Inference, MCMC and Stochastic optimization methods. Then an example is given of how MCMC can be applied for maximizing production at a minimum cost in a chemical reaction process. It is observed that this method performs better in optimizing the given cost function with a very high certainty.