21 resultados para TETRACYCLINE COMPLEX
Resumo:
Global challenges, complexity and continuous uncertainty demand development of leadership approaches, employees and multi-organisation constellations. Current leadership theories do not sufficiently address the needs of complex business environments. First of all, before successful leadership models can be applied in practice, leadership needs to shift from the industrial age to the knowledge era. Many leadership models still view leadership solely through the perspective of linear process thinking. In addition, there is not enough knowledge or experience in applying these newer models in practice. Leadership theories continue to be based on the assumption that leaders possess or have access to all the relevant knowledge and capabilities to decide future directions without external advice. In many companies, however, the workforce consists of skilled professionals whose work and related interfaces are so challenging that the leaders cannot grasp all the linked viewpoints and cross-impacts alone. One of the main objectives of this study is to understand how to support participants in organisations and their stakeholders to, through practice-based innovation processes, confront various environments. Another aim is to find effective ways of recognising and reacting to diverse contexts, so companies and other stakeholders are better able to link to knowledge flows and shared value creation processes in advancing joint value to their customers. The main research question of this dissertation is, then, to seek understanding of how to enhance leadership in complex environments. The dissertation can, on the whole, be characterised as a qualitative multiple-case study. The research questions and objectives were investigated through six studies published in international scientific journals. The main methods applied were interviews, action research and a survey. The empirical focus was on Finnish companies, and the research questions were examined in various organisations at the top levels (leaders and managers) and bottom levels (employees) in the context of collaboration between organisations and cooperation between case companies and their client organisations. However, the emphasis of the analysis is the internal and external aspects of organisations, which are conducted in practice-based innovation processes. The results of this study suggest that the Cynefin framework, complexity leadership theory and transformational leadership represent theoretical models applicable to developing leadership through practice-based innovation. In and of themselves, they all support confronting contemporary challenges, but an implementable method for organisations may be constructed by assimilating them into practice-based innovation processes. Recognition of diverse environments, their various contexts and roles in the activities and collaboration of organisations and their interest groups is ever-more important to achieving better interaction in which a strategic or formal status may be bypassed. In innovation processes, it is not necessarily the leader who is in possession of the essential knowledge; thus, it is the role of leadership to offer methods and arenas where different actors may generate advances. Enabling and supporting continuous interaction and integrated knowledge flows is of crucial importance, to achieve emergence of innovations in the activities of organisations and various forms of collaboration. The main contribution of this dissertation relates to applying these new conceptual models in practice. Empirical evidence on the relevance of different leadership roles in practice-based innovation processes in Finnish companies is another valuable contribution. Finally, the dissertation sheds light on the significance of combining complexity science with leadership and innovation theories in research.
Resumo:
This study combines several projects related to the flows in vessels with complex shapes representing different chemical apparata. Three major cases were studied. The first one is a two-phase plate reactor with a complex structure of intersecting micro channels engraved on one plate which is covered by another plain plate. The second case is a tubular microreactor, consisting of two subcases. The first subcase is a multi-channel two-component commercial micromixer (slit interdigital) used to mix two liquid reagents before they enter the reactor. The second subcase is a micro-tube, where the distribution of the heat generated by the reaction was studied. The third case is a conventionally packed column. However, flow, reactions or mass transfer were not modeled. Instead, the research focused on how to describe mathematically the realistic geometry of the column packing, which is rather random and can not be created using conventional computeraided design or engineering (CAD/CAE) methods. Several modeling approaches were used to describe the performance of the processes in the considered vessels. Computational fluid dynamics (CFD) was used to describe the details of the flow in the plate microreactor and micromixer. A space-averaged mass transfer model based on Fick’s law was used to describe the exchange of the species through the gas-liquid interface in the microreactor. This model utilized data, namely the values of the interfacial area, obtained by the corresponding CFD model. A common heat transfer model was used to find the heat distribution in the micro-tube. To generate the column packing, an additional multibody dynamic model was implemented. Auxiliary simulation was carried out to determine the position and orientation of every packing element in the column. This data was then exported into a CAD system to generate desirable geometry, which could further be used for CFD simulations. The results demonstrated that the CFD model of the microreactor could predict the flow pattern well enough and agreed with experiments. The mass transfer model allowed to estimate the mass transfer coefficient. Modeling for the second case showed that the flow in the micromixer and the heat transfer in the tube could be excluded from the larger model which describes the chemical kinetics in the reactor. Results of the third case demonstrated that the auxiliary simulation could successfully generate complex random packing not only for the column but also for other similar cases.
Resumo:
Wind energy has obtained outstanding expectations due to risks of global warming and nuclear energy production plant accidents. Nowadays, wind farms are often constructed in areas of complex terrain. A potential wind farm location must have the site thoroughly surveyed and the wind climatology analyzed before installing any hardware. Therefore, modeling of Atmospheric Boundary Layer (ABL) flows over complex terrains containing, e.g. hills, forest, and lakes is of great interest in wind energy applications, as it can help in locating and optimizing the wind farms. Numerical modeling of wind flows using Computational Fluid Dynamics (CFD) has become a popular technique during the last few decades. Due to the inherent flow variability and large-scale unsteadiness typical in ABL flows in general and especially over complex terrains, the flow can be difficult to be predicted accurately enough by using the Reynolds-Averaged Navier-Stokes equations (RANS). Large- Eddy Simulation (LES) resolves the largest and thus most important turbulent eddies and models only the small-scale motions which are more universal than the large eddies and thus easier to model. Therefore, LES is expected to be more suitable for this kind of simulations although it is computationally more expensive than the RANS approach. With the fast development of computers and open-source CFD software during the recent years, the application of LES toward atmospheric flow is becoming increasingly common nowadays. The aim of the work is to simulate atmospheric flows over realistic and complex terrains by means of LES. Evaluation of potential in-land wind park locations will be the main application for these simulations. Development of the LES methodology to simulate the atmospheric flows over realistic terrains is reported in the thesis. The work also aims at validating the LES methodology at a real scale. In the thesis, LES are carried out for flow problems ranging from basic channel flows to real atmospheric flows over one of the most recent real-life complex terrain problems, the Bolund hill. All the simulations reported in the thesis are carried out using a new OpenFOAM® -based LES solver. The solver uses the 4th order time-accurate Runge-Kutta scheme and a fractional step method. Moreover, development of the LES methodology includes special attention to two boundary conditions: the upstream (inflow) and wall boundary conditions. The upstream boundary condition is generated by using the so-called recycling technique, in which the instantaneous flow properties are sampled on aplane downstream of the inlet and mapped back to the inlet at each time step. This technique develops the upstream boundary-layer flow together with the inflow turbulence without using any precursor simulation and thus within a single computational domain. The roughness of the terrain surface is modeled by implementing a new wall function into OpenFOAM® during the thesis work. Both, the recycling method and the newly implemented wall function, are validated for the channel flows at relatively high Reynolds number before applying them to the atmospheric flow applications. After validating the LES model over simple flows, the simulations are carried out for atmospheric boundary-layer flows over two types of hills: first, two-dimensional wind-tunnel hill profiles and second, the Bolund hill located in Roskilde Fjord, Denmark. For the twodimensional wind-tunnel hills, the study focuses on the overall flow behavior as a function of the hill slope. Moreover, the simulations are repeated using another wall function suitable for smooth surfaces, which already existed in OpenFOAM® , in order to study the sensitivity of the flow to the surface roughness in ABL flows. The simulated results obtained using the two wall functions are compared against the wind-tunnel measurements. It is shown that LES using the implemented wall function produces overall satisfactory results on the turbulent flow over the two-dimensional hills. The prediction of the flow separation and reattachment-length for the steeper hill is closer to the measurements than the other numerical studies reported in the past for the same hill geometry. The field measurement campaign performed over the Bolund hill provides the most recent field-experiment dataset for the mean flow and the turbulence properties. A number of research groups have simulated the wind flows over the Bolund hill. Due to the challenging features of the hill such as the almost vertical hill slope, it is considered as an ideal experimental test case for validating micro-scale CFD models for wind energy applications. In this work, the simulated results obtained for two wind directions are compared against the field measurements. It is shown that the present LES can reproduce the complex turbulent wind flow structures over a complicated terrain such as the Bolund hill. Especially, the present LES results show the best prediction of the turbulent kinetic energy with an average error of 24.1%, which is a 43% smaller than any other model results reported in the past for the Bolund case. Finally, the validated LES methodology is demonstrated to simulate the wind flow over the existing Muukko wind farm located in South-Eastern Finland. The simulation is carried out only for one wind direction and the results on the instantaneous and time-averaged wind speeds are briefly reported. The demonstration case is followed by discussions on the practical aspects of LES for the wind resource assessment over a realistic inland wind farm.
Resumo:
Personalized medicine will revolutionize our capabilities to combat disease. Working toward this goal, a fundamental task is the deciphering of geneticvariants that are predictive of complex diseases. Modern studies, in the formof genome-wide association studies (GWAS) have afforded researchers with the opportunity to reveal new genotype-phenotype relationships through the extensive scanning of genetic variants. These studies typically contain over half a million genetic features for thousands of individuals. Examining this with methods other than univariate statistics is a challenging task requiring advanced algorithms that are scalable to the genome-wide level. In the future, next-generation sequencing studies (NGS) will contain an even larger number of common and rare variants. Machine learning-based feature selection algorithms have been shown to have the ability to effectively create predictive models for various genotype-phenotype relationships. This work explores the problem of selecting genetic variant subsets that are the most predictive of complex disease phenotypes through various feature selection methodologies, including filter, wrapper and embedded algorithms. The examined machine learning algorithms were demonstrated to not only be effective at predicting the disease phenotypes, but also doing so efficiently through the use of computational shortcuts. While much of the work was able to be run on high-end desktops, some work was further extended so that it could be implemented on parallel computers helping to assure that they will also scale to the NGS data sets. Further, these studies analyzed the relationships between various feature selection methods and demonstrated the need for careful testing when selecting an algorithm. It was shown that there is no universally optimal algorithm for variant selection in GWAS, but rather methodologies need to be selected based on the desired outcome, such as the number of features to be included in the prediction model. It was also demonstrated that without proper model validation, for example using nested cross-validation, the models can result in overly-optimistic prediction accuracies and decreased generalization ability. It is through the implementation and application of machine learning methods that one can extract predictive genotype–phenotype relationships and biological insights from genetic data sets.