20 resultados para Support material


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Silica based biomaterials, such as melt-derived bioactive glasses and sol-gel glasses, have been used for a long time in bone healing applications because of their ability to form hydroxyapatite and to stimulate stem cell proliferation and differentiation. In this study, bone marrow derived cells were cultured with bioactive glass and sol-gel silica, and seeded into porous polymer composite scaffolds that were then implanted femorally and subcutaneously in rats to monitor their migration inside host tissue. Bone marrow derived cells were also injected intraperitoneally. Transplanted cells migrated to various tissues inside the host, including the lung, liver spleen, thymus and bone marrow. The method of transplantation affected the time frame of cell migration, with intraperitoneal injection being the fastest and femoral implantation the slowest, but not the target tissues of migration. Transplanted donor cells had a limited lifetime in the host and were later eliminated from all tested tissues. Bioactive glass, however, affected the implanted cells negatively. When it was present in the scaffold no donor cells were found in any of the tested host tissues. Bioactive glass S53P4 was found to support both osteoblastic and osteoclastic phenotype of bone marrow derived cells, but it was resistant to the resorbing effect of osteoclastic bone marrow derived cells, showing that bioactive glass is rather dissolved through physicochemical reactions than resorbed by cells. Fast-dissolving silica sol gel in microparticulate form was found to increase collagen formation by bone marrow derived cells, while slow dissolving silica microparticles enhanced their proliferation, suggesting that the dissolution rate of silica controls the response of bone marrow derived cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is done as a part of project called FuncMama that is a project between Technical Research Centre of Finland (VTT), Oulu University (OY), Lappeenranta University of Technology (LUT) and Finnish industrial partners. Main goal of the project is to manufacture electric and mechanical components from mixed materials using laser sintering. Aim of this study was to create laser sintered pieces from ceramic material and monitor the sintering event by using spectrometer. Spectrometer is a device which is capable to record intensity of different wavelengths in relation with time. In this study the monitoring of laser sintering was captured with the equipment which consists of Ocean Optics spectrometer, optical fiber and optical lens (detector head). Light from the sintering process hit first to the lens system which guides the light in to the optical fibre. Optical fibre transmits the light from the sintering process to the spectrometer where wavelengths intensity level information is detected. The optical lens of the spectrometer was rigidly set and did not move along with the laser beam. Data which was collected with spectrometer from the laser sintering process was converted with Excel spreadsheet program for result’s evaluation. Laser equipment used was IPG Photonics pulse fibre laser. Laser parameters were kept mainly constant during experimental part and only sintering speed was changed. That way it was possible to find differences in the monitoring results without fear of too many parameters mixing together and affecting to the conclusions. Parts which were sintered had one layer and size of 5 x 5 mm. Material was CT2000 – tape manufactured by Heraeus which was later on post processed to powder. Monitoring of different sintering speeds was tested by using CT2000 reference powder. Moreover tests how different materials effect to the process monitoring were done by adding foreign powder Du Pont 951 which had suffered in re-grinding and which was more reactive than CT2000. By adding foreign material it simulates situation where two materials are accidently mixed together and it was studied if that can be seen with the spectrometer. It was concluded in this study that with the spectrometer it is possible to detect changes between different laser sintering speeds. When the sintering speed is lowered the intensity level of light is higher from the process. This is a result of higher temperature at the sintering spot and that can be noticed with the spectrometer. That indicates it could be possible to use spectrometer as a tool for process observation and support the idea of having system that can help setting up the process parameter window. Also important conclusion was how well the adding of foreign material could be seen with the spectrometer. When second material was added a significant intensity level raise could be noticed in that part where foreign material was mixed. That indicates it is possible to see if there are any variations in the material or if there are more materials mixed together. Spectrometric monitoring of laser sintering could be useful tool for process window observation and temperature controlling of the sintering process. For example if the process window for specific material is experimentally determined to get wanted properties and satisfying sintering speed. It is possible if the data is constantly recorded that the results can show faults in the part texture between layers. Changes between the monitoring data and the experimentally determined values can then indicate changes in the material being generated by material faults or by wrong process parameters. The results of this study show that spectrometer could be one possible tool for monitoring. But to get in that point where this all can be made possible much more researching is needed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is a literature study that develops a conceptual model of decision making and decision support in service systems. The study is related to the Ä-Logi, Intelligent Service Logic for Welfare Sector Services research project, and the objective of the study is to develop the necessary theoretical framework to enable further research based on the research project results and material. The study first examines the concepts of service and service systems, focusing on understanding the characteristics of service systems and their implications for decision making and decision support to provide the basis for the development of the conceptual model. Based on the identified service system characteristics, an integrated model of service systems is proposed that views service systems through a number of interrelated perspectives that each offer different, but complementary, implications on the nature of decision making and the requirements for decision support in service systems. Based on the model, it is proposed that different types of decision making contexts can be identified in service systems that may be dominated by different types of decision making processes and where different types of decision support may be required, depending on the characteristics of the decision making context and its decision making processes. The proposed conceptual model of decision making and decision support in service systems examines the characteristics of decision making contexts and processes in service systems, and their typical requirements for decision support. First, a characterization of different types of decision making contexts in service systems is proposed based on the Cynefin framework and the identified service system characteristics. Second, the nature of decision making processes in service systems is proposed to be dual, with both rational and naturalistic decision making processes existing in service systems, and having an important and complementary role in decision making in service systems. Finally, a characterization of typical requirements for decision support in service systems is proposed that examines the decision support requirements associated with different types of decision making processes in characteristically different types of decision making contexts. It is proposed that decision support for the decision making processes that are based on rational decision making can be based on organizational decision support models, while decision support for the decision making processes that are based on naturalistic decision making should be based on supporting the decision makers’ situation awareness and facilitating the development of their tacit knowledge of the system and its tasks. Based on the proposed conceptual model a further research process is proposed. The study additionally provides a number of new perspectives on the characteristics of service systems, and the nature of decision making and requirements for decision support in service systems that can potentially provide a basis for further discussion and research, and support the practice alike.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This master’s thesis examines the effects of increased material recycling on different waste-to-energy concepts. With background study and a developed techno-economic computational method the feasibility of chosen scenarios with different combinations of mechanical treatment and waste firing technologies can be evaluated. The background study covers the waste scene of Finland, and potential market areas Poland and France. Calculated cases concentrate on municipal solid waste treatment in the Finnish operational environment. The chosen methodology to approach the objectives is techno-economic feasibility assessment. It combines calculation methods of literature and practical engineering to define the material and energy balances in chosen scenarios. The calculation results together with other operational and financial data can be concluded to net present values compared between the scenarios. For the comparison, four scenarios, most vital and alternative between each other, are established. The baseline scenario is grate firing of source separated mixed municipal solid waste. Second scenario is fluidized bed combustion of solid recovered fuel produced in mechanical treatment process with metal separation. Third scenario combines a biomaterial separation process to the solid recovered fuels preparation and in the last scenario plastics are separated in addition to the previous operations. The results indicated that the mechanical treatment scenarios still need to overcome some problems to become feasible. Problems are related to profitability, residue disposal and technical reliability. Many uncertainties are also related to the data gathered over waste characteristics, technical performance and markets. With legislative support and development of further processing technologies and markets of the recycled materials the scenarios with biomaterial and plastic separation may operate feasibly in the future.