111 resultados para Simulation package
Resumo:
Selostus: Kohotettujen CO‚́‚:n ja lämpötilan vaikutukset kevätvehnän fenologiseen kehitykseen ja sadontuottomahdollisuuksiin
Resumo:
Tämän tutkimustyön kohteena on TietoEnator Oy:n kehittämän Fenix-tietojärjestelmän kapasiteettitarpeen ennustaminen. Työn tavoitteena on tutustua Fenix-järjestelmän eri osa-alueisiin, löytää tapa eritellä ja mallintaa eri osa-alueiden vaikutus järjestelmän kuormitukseen ja selvittää alustavasti mitkä parametrit vaikuttavat kyseisten osa-alueiden luomaan kuormitukseen. Osa tätä työtä on tutkia eri vaihtoehtoja simuloinnille ja selvittää eri vaihtoehtojen soveltuvuus monimutkaisten järjestelmien mallintamiseen. Kerätyn tiedon pohjaltaluodaan järjestelmäntietovaraston kuormitusta kuvaava simulaatiomalli. Hyödyntämällä mallista saatua tietoa ja tuotantojärjestelmästä mitattua tietoa mallia kehitetään vastaamaan yhä lähemmin todellisen järjestelmän toimintaa. Mallista tarkastellaan esimerkiksi simuloitua järjestelmäkuormaa ja jonojen käyttäytymistä. Tuotantojärjestelmästä mitataan eri kuormalähteiden käytösmuutoksia esimerkiksi käyttäjämäärän ja kellonajan suhteessa. Tämän työn tulosten on tarkoitus toimia pohjana myöhemmin tehtävälle jatkotutkimukselle, jossa osa-alueiden parametrisointia tarkennetaan lisää, mallin kykyä kuvata todellista järjestelmää tehostetaanja mallin laajuutta kasvatetaan.
Resumo:
The human motion study, which relies on mathematical and computational models ingeneral, and multibody dynamic biomechanical models in particular, has become asubject of many recent researches. The human body model can be applied to different physical exercises and many important results such as muscle forces, which are difficult to be measured through practical experiments, can be obtained easily. In the work, human skeletal lower limb model consisting of three bodies in build using the flexible multibody dynamics simulation approach. The floating frame of reference formulation is used to account for the flexibility in the bones of the human lower limb model. The main reason of considering the flexibility inthe human bones is to measure the strains in the bone result from different physical exercises. It has been perceived the bone under strain will become stronger in order to cope with the exercise. On the other hand, the bone strength is considered and important factors in reducing the bone fractures. The simulation approach and model developed in this work are used to measure the bone strain results from applying raising the sole of the foot exercise. The simulation results are compared to the results available in literature. The comparison shows goof agreement. This study sheds the light on the importance of using the flexible multibody dynamic simulation approach to build human biomechanical models, which can be used in developing some exercises to achieve the optimalbone strength.
Resumo:
In this master's thesis a mechanical model that is driven with variable speed synchronous machine was developed. The developed mechanical model simulates the mechanics of power transmission and its torsional vibrations. The mechanical model was developed for the need of the branched mechanics of a rolling mill and the propulsion system of a tanker. First, the scope of the thesis was to clarify the concepts connected to the mechanical model. The clarified concepts are the variable speed drive, the mechanics of power transmission and the vibrationsin the power transmission. Next, the mechanical model with straight shaft line and twelve moments of inertia that existed in the beginning was developed to be branched considering the case of parallel machines and the case of parallel rolls. Additionally, the model was expanded for the need of moreaccurate simulation to up to thirty moments of inertia. The model was also enhanced to enable three phase short circuit situation of the simulated machine. After that the mechanical model was validated by comparing the results of the developed simulation tool to results of other simulation tools. The compared results are the natural frequencies and mode shapes of torsional vibration, the response of the load torque step and the stress in the mechanical system occurred by the permutation of the magnetic field that is arisen from the three phase short circuit situation. The comparisons were accomplished well and the mechanical model was validated for the compared cases. Further development to be made is to develop the load torque to be time-dependent and to install two frequency converters and two FEM modeled machines to be simulated parallel.
Resumo:
In bubbly flow simulations, bubble size distribution is an important factor in determination of hydrodynamics. Beside hydrodynamics, it is crucial in the prediction of interfacial area available for mass transfer and in the prediction of reaction rate in gas-liquid reactors such as bubble columns. Solution of population balance equations is a method which can help to model the size distribution by considering continuous bubble coalescence and breakage. Therefore, in Computational Fluid Dynamic simulations it is necessary to couple CFD and Population Balance Model (CFD-PBM) to get reliable distribution. In the current work a CFD-PBM coupled model is implemented as FORTRAN subroutines in ANSYS CFX 10 and it has been tested for bubbly flow. This model uses the idea of Multi Phase Multi Size Group approach which was previously presented by Sha et al. (2006) [18]. The current CFD-PBM coupled method considers inhomogeneous flow field for different bubble size groups in the Eulerian multi-dispersed phase systems. Considering different velocity field for bubbles can give the advantageof more accurate solution of hydrodynamics. It is also an improved method for prediction of bubble size distribution in multiphase flow compared to available commercial packages.
Resumo:
Diplomityön tavoitteena on paineistimen yksityiskohtainen mallintaminen APROS- ja TRACE- termohydrauliikkaohjelmistoja käyttäen. Rakennetut paineistinmallit testattiin vertaamalla laskentatuloksia paineistimen täyttymistä, tyhjentymistä ja ruiskutusta käsittelevistä erilliskokeista saatuun mittausdataan. Tutkimuksen päätavoitteena on APROSin paineistinmallin validoiminen käyttäen vertailuaineistona PACTEL ATWS-koesarjan sopivia paineistinkokeita sekä MIT Pressurizer- ja Neptunus- erilliskokeita. Lisäksi rakennettiin malli Loviisan ydinvoimalaitoksen paineistimesta, jota käytettiin turbiinitrippitransientin simulointiin tarkoituksena selvittää mahdolliset voimalaitoksen ja koelaitteistojen mittakaavaerosta johtuvat vaikutukset APROSin paineistinlaskentaan. Kokeiden simuloinnissa testattiin erilaisia noodituksia ja mallinnusvaihtoehtoja, kuten entalpian ensimmäisen ja toisen kertaluvun diskretisointia, ja APROSin sekä TRACEn antamia tuloksia vertailtiin kattavasti toisiinsa. APROSin paineistinmallin lämmönsiirtokorrelaatioissa havaittiin merkittävä puute ja laskentatuloksiin saatiin huomattava parannus ottamalla käyttöön uusi seinämälauhtumismalli. Työssä tehdyt TRACE-simulaatiot ovat osa United States Nuclear Regulatory Commissionin kansainvälistä CAMP-koodinkehitys-ja validointiohjelmaa.
Resumo:
Työn tarkoituksena oli testata jo tutkimuskeskuksella käytössä ollutta ja tutkimuskeskukselle tässä työssä kehitettyä pakkauksen vesihöyrytiiveyteen liittyvää mittausmenetelmää. Saatuja tuloksia verrattiin keskenään sekä materiaalista mitattuihin arvoihin. Elintarvikepakkauksia tutkittiin myös kosteussensoreiden, säilyvyyskokeen sekä kuljetussimuloinnin avulla. Optimoinnilla tutkittiin pakkauksen muodon vaikutusta vesihöyrytiiveyteen. Pakkauksen vesihöyrynläpäisyn mittaamiseen kehitetty menetelmä toimi hyvin ja sen toistettavuus oli hyvä. Verrattaessa sitä jo olemassa olleeseen menetelmään tulokseksi saatiin, että uusi menetelmä oli nopeampi ja vaati vähemmän työaikaa, mutta molemmat menetelmät antoivat hyviä arvoja rinnakkaisille näytteille. Kosteussensoreilla voitiin tutkia tyhjän pakkauksen sisällä olevan kosteuden muutoksia säilytyksen aikana. Säilyvyystesti tehtiin muroilla ja parhaan vesihöyrysuojan antoivat pakkaukset joissa oli alumiinilaminaatti- tai metalloitu OPP kerros. Kuljetustestauksen ensimmäisessä testissä pakkauksiin pakattiin muroja ja toisessa testissä nuudeleita. Kuljetussimuloinnilla ei ollutvaikutusta pakkausten sisäpintojen eheyteen eikä siten pakkausten vesihöyrytiiveyteen. Optimoinnilla vertailtiin eri muotoisten pakkausten tilavuus/pinta-ala suhdetta ja vesihöyrytiiveyden riippuvuutta pinta-alasta. Optimaalisimmaksi pakkaukseksi saatiin pallo, jonka pinta-ala oli pienin ja materiaalin sallima vesihöyrynläpäisy suurin ja vesihöyrybarrierin määrä pienin.
Resumo:
The study of fluid flow in pipes is one of the main topic of interest for engineers in industries. In this thesis, an effort is made to study the boundary layers formed near the wall of the pipe and how it behaves as a resistance to heat transfer. Before few decades, the scientists used to derive the analytical and empirical results by hand as there were limited means available to solve the complex fluid flow phenomena. Due to the increase in technology, now it has been practically possible to understand and analyze the actual fluid flow in any type of geometry. Several methodologies have been used in the past to analyze the boundary layer equations and to derive the expression for heat transfer. An integral relation approach is used for the analytical solution of the boundary layer equations and is compared with the FLUENT simulations for the laminar case. Law of the wall approach is used to derive the empirical correlation between dimensionless numbers and is then compared with the results from FLUENT for the turbulent case. In this thesis, different approaches like analytical, empirical and numerical are compared for the same set of fluid flow equations.
Resumo:
The studies of flow phenomena, heat and mass transfer in microchannel reactors are beneficial to estimate and evaluate the ability of microchannel reactors to be operated for a given process reaction such as Fischer-Tropsch synthesis. The flow phenomena, for example, the flow regimes and flow patterns in microchannel reactors for both single phase and multiphase flow are affected by the configuration of the flow channel. The reviews of the previous works about the analysis of related parameters that affect the flow phenomena are shown in this report. In order to predict the phenomena of Fischer-Tropsch synthesis in microchannel reactors, the 3-dimensional computational fluid dynamic simulation with commercial software package FLUENT was done to study the flow phenomena and heat transfer for gas phase Fischer-Tropsch products flow in rectangular microchannel with hydraulic diameter 500 ¿m and length 15 cm. Numerical solution with slip boundary condition was used in the simulation and the flowphenomena and heat transfer were determined.
Resumo:
The active magnetic bearings present a new technology which has many advantages compared to traditional bearing designs. Active magnetic bearings, however, require retainer bearings order to prevent damages in the event of a component, power or a control loop failure. In the dropdown situation, when the rotor drops from the magnetic bearings to the retainer bearings, the design parameters of the retainer bearings have a significant influence on the behaviour of the rotor. In this study, the dynamics of an active magnetic bearings supported electric motor during rotor drop on retainer bearings is studied using a multibody simulation approach. Various design parameters of retainer bearings are studied using a simulation model while results are compared with those found in literature. The retainer bearings are modelled using a detailed ball bearing model, which accounts damping and stiffness properties, oil film and friction between races and rolling elements. The model of the ball bearings includes inertia description of rollingelements. The model of the magnetic bearing system contains unbalances of the rotor and stiffness and damping properties of support. In this study, a computationally efficient contact model between the rotor and the retainer bearings is proposed. In addition, this work introduces information for the design of physicalprototype and its retainer bearings.
Resumo:
Theultimate goal of any research in the mechanism/kinematic/design area may be called predictive design, ie the optimisation of mechanism proportions in the design stage without requiring extensive life and wear testing. This is an ambitious goal and can be realised through development and refinement of numerical (computational) technology in order to facilitate the design analysis and optimisation of complex mechanisms, mechanical components and systems. As a part of the systematic design methodology this thesis concentrates on kinematic synthesis (kinematic design and analysis) methods in the mechanism synthesis process. The main task of kinematic design is to find all possible solutions in the form of structural parameters to accomplish the desired requirements of motion. Main formulations of kinematic design can be broadly divided to exact synthesis and approximate synthesis formulations. The exact synthesis formulation is based in solving n linear or nonlinear equations in n variables and the solutions for the problem areget by adopting closed form classical or modern algebraic solution methods or using numerical solution methods based on the polynomial continuation or homotopy. The approximate synthesis formulations is based on minimising the approximation error by direct optimisation The main drawbacks of exact synthesis formulationare: (ia) limitations of number of design specifications and (iia) failure in handling design constraints- especially inequality constraints. The main drawbacks of approximate synthesis formulations are: (ib) it is difficult to choose a proper initial linkage and (iib) it is hard to find more than one solution. Recentformulations in solving the approximate synthesis problem adopts polynomial continuation providing several solutions, but it can not handle inequality const-raints. Based on the practical design needs the mixed exact-approximate position synthesis with two exact and an unlimited number of approximate positions has also been developed. The solutions space is presented as a ground pivot map but thepole between the exact positions cannot be selected as a ground pivot. In this thesis the exact synthesis problem of planar mechanism is solved by generating all possible solutions for the optimisation process ¿ including solutions in positive dimensional solution sets - within inequality constraints of structural parameters. Through the literature research it is first shown that the algebraic and numerical solution methods ¿ used in the research area of computational kinematics ¿ are capable of solving non-parametric algebraic systems of n equations inn variables and cannot handle the singularities associated with positive-dimensional solution sets. In this thesis the problem of positive-dimensional solutionsets is solved adopting the main principles from mathematical research area of algebraic geometry in solving parametric ( in the mathematical sense that all parameter values are considered ¿ including the degenerate cases ¿ for which the system is solvable ) algebraic systems of n equations and at least n+1 variables.Adopting the developed solution method in solving the dyadic equations in direct polynomial form in two- to three-precision-points it has been algebraically proved and numerically demonstrated that the map of the ground pivots is ambiguousand that the singularities associated with positive-dimensional solution sets can be solved. The positive-dimensional solution sets associated with the poles might contain physically meaningful solutions in the form of optimal defectfree mechanisms. Traditionally the mechanism optimisation of hydraulically driven boommechanisms is done at early state of the design process. This will result in optimal component design rather than optimal system level design. Modern mechanismoptimisation at system level demands integration of kinematic design methods with mechanical system simulation techniques. In this thesis a new kinematic design method for hydraulically driven boom mechanism is developed and integrated in mechanical system simulation techniques. The developed kinematic design method is based on the combinations of two-precision-point formulation and on optimisation ( with mathematical programming techniques or adopting optimisation methods based on probability and statistics ) of substructures using calculated criteria from the system level response of multidegree-of-freedom mechanisms. Eg. by adopting the mixed exact-approximate position synthesis in direct optimisation (using mathematical programming techniques) with two exact positions and an unlimitednumber of approximate positions the drawbacks of (ia)-(iib) has been cancelled.The design principles of the developed method are based on the design-tree -approach of the mechanical systems and the design method ¿ in principle ¿ is capable of capturing the interrelationship between kinematic and dynamic synthesis simultaneously when the developed kinematic design method is integrated with the mechanical system simulation techniques.
Resumo:
Technological development brings more and more complex systems to the consumer markets. The time required for bringing a new product to market is crucial for the competitive edge of a company. Simulation is used as a tool to model these products and their operation before actual live systems are built. The complexity of these systems can easily require large amounts of memory and computing power. Distributed simulation can be used to meet these demands. Distributed simulation has its problems. Diworse, a distributed simulation environment, was used in this study to analyze the different factors that affect the time required for the simulation of a system. Examples of these factors are the simulation algorithm, communication protocols, partitioning of the problem, distributionof the problem, capabilities of the computing and communications equipment and the external load. Offices offer vast amounts of unused capabilities in the formof idle workstations. The use of this computing power for distributed simulation requires the simulation to adapt to a changing load situation. This requires all or part of the simulation work to be removed from a workstation when the owner wishes to use the workstation again. If load balancing is not performed, the simulation suffers from the workstation's reduced performance, which also hampers the owner's work. Operation of load balancing in Diworse is studied and it is shown to perform better than no load balancing, as well as which different approaches for load balancing are discussed.
Resumo:
Concerning process control of batch cooling crystallization the present work focused on the cooling profile and seeding technique. Secondly, the influence of additives on batch-wise precipitation process was investigated. Moreover, a Computational Fluid Dynamics (CFD) model for simulation of controlled batch cooling crystallization was developed. A novel cooling model to control supersaturation level during batch-wise cooling crystallization was introduced. The crystallization kinetics together with operating conditions, i.e. seed loading, cooling rate and batch time, were taken into account in the model. Especially, the supersaturation- and suspension density- dependent secondary nucleation was included in the model. The interaction between the operating conditions and their influence on the control target, i.e. the constant level of supersaturation, were studied with the aid of a numerical solution for the cooling model. Further, the batch cooling crystallization was simulated with the ideal mixing model and CFD model. The moment transformation of the population balance, together with the mass and heat balances, were solved numerically in the simulation. In order to clarify a relationship betweenthe operating conditions and product sizes, a system chart was developed for anideal mixing condition. The utilization of the system chart to determine the appropriate operating condition to meet a required product size was introduced. With CFD simulation, batch crystallization, operated following a specified coolingmode, was studied in the crystallizers having different geometries and scales. The introduced cooling model and simulation results were verified experimentallyfor potassium dihydrogen phosphate (KDP) and the novelties of the proposed control policies were demonstrated using potassium sulfate by comparing with the published results in the literature. The study on the batch-wise precipitation showed that immiscible additives could promote the agglomeration of a derivative of benzoic acid, which facilitated the filterability of the crystal product.
Resumo:
The application of forced unsteady-state reactors in case of selective catalytic reduction of nitrogen oxides (NOx) with ammonia (NH3) is sustained by the fact that favorable temperature and composition distributions which cannot be achieved in any steady-state regime can be obtained by means of unsteady-state operations. In a normal way of operation the low exothermicity of the selective catalytic reduction (SCR) reaction (usually carried out in the range of 280-350°C) is not enough to maintain by itself the chemical reaction. A normal mode of operation usually requires supply of supplementary heat increasing in this way the overall process operation cost. Through forced unsteady-state operation, the main advantage that can be obtained when exothermic reactions take place is the possibility of trapping, beside the ammonia, the moving heat wave inside the catalytic bed. The unsteady state-operation enables the exploitation of the thermal storage capacity of the catalyticbed. The catalytic bed acts as a regenerative heat exchanger allowing auto-thermal behaviour when the adiabatic temperature rise is low. Finding the optimum reactor configuration, employing the most suitable operation model and identifying the reactor behavior are highly important steps in order to configure a proper device for industrial applications. The Reverse Flow Reactor (RFR) - a forced unsteady state reactor - corresponds to the above mentioned characteristics and may be employed as an efficient device for the treatment of dilute pollutant mixtures. As a main disadvantage, beside its advantages, the RFR presents the 'wash out' phenomena. This phenomenon represents emissions of unconverted reactants at every switch of the flow direction. As a consequence our attention was focused on finding an alternative reactor configuration for RFR which is not affected by the incontrollable emissions of unconverted reactants. In this respect the Reactor Network (RN) was investigated. Its configuration consists of several reactors connected in a closed sequence, simulating a moving bed by changing the reactants feeding position. In the RN the flow direction is maintained in the same way ensuring uniformcatalyst exploitation and in the same time the 'wash out' phenomena is annulated. The simulated moving bed (SMB) can operate in transient mode giving practically constant exit concentration and high conversion levels. The main advantage of the reactor network operation is emphasizedby the possibility to obtain auto-thermal behavior with nearly uniformcatalyst utilization. However, the reactor network presents only a small range of switching times which allow to reach and to maintain an ignited state. Even so a proper study of the complex behavior of the RN may give the necessary information to overcome all the difficulties that can appear in the RN operation. The unsteady-state reactors complexity arises from the fact that these reactor types are characterized by short contact times and complex interaction between heat and mass transportphenomena. Such complex interactions can give rise to a remarkable complex dynamic behavior characterized by a set of spatial-temporal patterns, chaotic changes in concentration and traveling waves of heat or chemical reactivity. The main efforts of the current research studies concern the improvement of contact modalities between reactants, the possibility of thermal wave storage inside the reactor and the improvement of the kinetic activity of the catalyst used. Paying attention to the above mentioned aspects is important when higher activity even at low feeding temperatures and low emissions of unconverted reactants are the main operation concerns. Also, the prediction of the reactor pseudo or steady-state performance (regarding the conversion, selectivity and thermal behavior) and the dynamicreactor response during exploitation are important aspects in finding the optimal control strategy for the forced unsteady state catalytic tubular reactors. The design of an adapted reactor requires knowledge about the influence of its operating conditions on the overall process performance and a precise evaluation of the operating parameters rage for which a sustained dynamic behavior is obtained. An apriori estimation of the system parameters result in diminution of the computational efforts. Usually the convergence of unsteady state reactor systems requires integration over hundreds of cycles depending on the initial guess of the parameter values. The investigation of various operation models and thermal transfer strategies give reliable means to obtain recuperative and regenerative devices which are capable to maintain an auto-thermal behavior in case of low exothermic reactions. In the present research work a gradual analysis of the SCR of NOx with ammonia process in forced unsteady-state reactors was realized. The investigation covers the presentationof the general problematic related to the effect of noxious emissions in the environment, the analysis of the suitable catalysts types for the process, the mathematical analysis approach for modeling and finding the system solutions and the experimental investigation of the device found to be more suitable for the present process. In order to gain information about the forced unsteady state reactor design, operation, important system parameters and their values, mathematical description, mathematicalmethod for solving systems of partial differential equations and other specific aspects, in a fast and easy way, and a case based reasoning (CBR) approach has been used. This approach, using the experience of past similarproblems and their adapted solutions, may provide a method for gaining informations and solutions for new problems related to the forced unsteady state reactors technology. As a consequence a CBR system was implemented and a corresponding tool was developed. Further on, grooving up the hypothesis of isothermal operation, the investigation by means of numerical simulation of the feasibility of the SCR of NOx with ammonia in the RFRand in the RN with variable feeding position was realized. The hypothesis of non-isothermal operation was taken into account because in our opinion ifa commercial catalyst is considered, is not possible to modify the chemical activity and its adsorptive capacity to improve the operation butis possible to change the operation regime. In order to identify the most suitable device for the unsteady state reduction of NOx with ammonia, considering the perspective of recuperative and regenerative devices, a comparative analysis of the above mentioned two devices performance was realized. The assumption of isothermal conditions in the beginningof the forced unsteadystate investigation allowed the simplification of the analysis enabling to focus on the impact of the conditions and mode of operation on the dynamic features caused by the trapping of one reactant in the reactor, without considering the impact of thermal effect on overall reactor performance. The non-isothermal system approach has been investigated in order to point out the important influence of the thermal effect on overall reactor performance, studying the possibility of RFR and RN utilization as recuperative and regenerative devices and the possibility of achieving a sustained auto-thermal behavior in case of lowexothermic reaction of SCR of NOx with ammonia and low temperature gasfeeding. Beside the influence of the thermal effect, the influence of the principal operating parameters, as switching time, inlet flow rate and initial catalyst temperature have been stressed. This analysis is important not only because it allows a comparison between the two devices and optimisation of the operation, but also the switching time is the main operating parameter. An appropriate choice of this parameter enables the fulfilment of the process constraints. The level of the conversions achieved, the more uniform temperature profiles, the uniformity ofcatalyst exploitation and the much simpler mode of operation imposed the RN as a much more suitable device for SCR of NOx with ammonia, in usual operation and also in the perspective of control strategy implementation. Theoretical simplified models have also been proposed in order to describe the forced unsteady state reactors performance and to estimate their internal temperature and concentration profiles. The general idea was to extend the study of catalytic reactor dynamics taking into account the perspectives that haven't been analyzed yet. The experimental investigation ofRN revealed a good agreement between the data obtained by model simulation and the ones obtained experimentally.
Resumo:
Työn tarkoituksena oli tutkia kartonkipohjaisten pakkausmateriaalien läpäisyominaisuuksia sekä pakkausten tiiveyteen vaikuttavia tekijöitä. Työssä verrattiin skaivatun ja skaivaamattoman raakareunan sekä tölkkien pohjaratkaisujen ominaisuuksia vesihöyryn- ja hapen läpäisevyydessä, kun käytetty kartonki oli molemmin puolin polymeeripäällystetty. Tiiveysominaisuuksia tutkittiin myös vuotomittauksin, värjäyksin ja elektronimikroskoopilla. Kuivan elintarvikkeen säilytystestillä ja kilpailijapakkausanalyyseillä oli tarkoituksena myös saada selville eri pakkausmateriaalien ja pakkauksien läpäisevyys- ja tiiveysominaisuuksia. Pakkauksen saumoilla oli yhtä suuri tai suurempi vaikutus vesihöyryn läpäisyssä kuin itse materiaalilla, kun pakkaus oli molemmin puolin polymeeripäällystetty kartonkikuppi. Skaivatun sauman vesihöyrynläpäisy oli vain 4-10 % pienempi kuin raakareunallisen sauman. Pakkauksen ulkopuolisten raakareunojen suojaaminen pienensi vesihöyrynläpäisevyyttä 30 %. Kun pakkauksen sisäpuolen raaka-reuna oli suojattu teipillä, saumoilla ei ollut niin suurta vaikutusta vesihöyryn läpäisyyn verrattuna materiaaliin. Raakareunan määrällä tölkin pohjassa tai pienillä vuodoilla tölkin saumoissa ei ollut merkitystä vesihöyryn läpäisyyn. Hapenläpäisyssä oli tärkeää ehyt barrierkerros. Polymeerisen barrierkerroksen reiät ja sauman skaivaus vaikuttivat enemmän kuin vesihöyryn läpäisyssä. Mitä enemmän tölkin pohjassa oli raakareunaa, sitä suurempi oli sen hapenläpäisy. Pakkauksen konvertointi, koneen säädöt ja lämmön kohdistus, ovat saattaneet aiheuttaa värjäyksellä havaitut barrierkerroksen mikroreiät. Kaupalliset kuiva-ainepakkaukset sisälsivät pääasiassa alumiinilaminaatin vesihöyryn, hapen ja valon suojana, kun tuotteena oli maitojauhetta ja rasvaa sisältävä elintarvike. Kuitenkin, jos pakkausmateriaali sisälsi vain ohuen sumutetun alumiinikerroksen, sen barrieriominaisuus ei ollut yhtä hyvä kuin alumiinilaminaatin. Äidinmaidonkorvikkeen säilytystestissä seurattiin eri analyysein tuotteen laatua kolmen kuukauden säilytyksen ajan. Pakkauksen vesihöyryn läpäisyominaisuus osoittautui tärkeimmäksi, sillä kosteuden vaikutus tuotteen laadun heikkenemisessä oli suurin. Hapen vaikutus on myös olennainen ja siten hyvä hapenestokerros sekä tiiveys ovat myös tärkeitä pakkauksen ominaisuuksia.